RICH 2013 – Hayama, Kanagawa, Japan 2-6 December 2013

The RICH detector of the NA62 experiment at CERN

AA62

M. Piccini INFN - sezione di Perugia

On behalf of the RICH working group of the NA62 experiment

Experiment layout & sensitivity

Background suppression

- Very challenging experiment:
- Weak signature for signal decay
- Huge background
- $K_{\mu 2}$ is the largest BR, a rejection factor ~4×10⁻¹³ is requested:
- Kinematics: $8 \times 10^{-5} \rightarrow$ Giga-Tracker + Straws
- Muon Veto: 10^{-5} \rightarrow Muon Veto detector
- Particle ID: $5 \times 10^{-2} \rightarrow \text{RICH} \leftarrow$
- Match a track (pion) seen by the STRAWS (10 MHz)
- with a track (kaon) seen by the GTK (750 MHz)
- Measure the track time, both upstream and downstream at **100 ps** level

discriminating between pions and muons

Momentum range for the pion: 15-35 GeV/c

Decay	BR
$\mu^{+}\nu$ (K _{µ2})	63.5%
$\pi^{+}\pi^{0}$ (K _{π2})	20.7%
$\pi^+\pi^+\pi^-$	5.6%
$\pi^0 e^+ v (K_{e3})$	5.1%
$\pi^{0}\mu^{+}\nu$ (K _{µ3})	3.3%

The Vessel

Support collars

- 17 m long vessel in steel, vacuum proof (in construction, it will be delivered at the beginning of 2014)
- max overpressure: 150 mbar
- wide from 4 m (beginning) to 3.4 m (end)
- 4 cylindrical sections ("drums") and one conical cap
- beam pipe (Ø 157 mm) going through
- thin aluminium entrance and exit windows

Conical cap

02/12/13 • 6

The gas system

Čerenkov threshold for pions in Neon at atmospheric pressure is ~12.5 GeV/c, RICH will have good efficiency at 15 GeV/c

- Vessel volume: 200 m³
- Neon at slightly above atmospheric pressure
- Neon density stability < 1%
- Contaminants < 1%

Procedure to fill the vessel:

The vessel is first fully evacuated, then fresh Neon is introduced in the vessel and finally the vessel is valve closed

The mirrors

Two regions with different centers of curvature (to avoid beam shadow)

- 18 hexagonal mirrors
 (700 mm wide, 25 mm thick)
- 2 half mirrors around the beam pipe
- Mirror Parameters + Quality:
- Spherical mirrors f= 17±0.1 m
- Reflectivity > 90% (195 650nm)
- $D_0 \le 4mm$ (circle which collects 90% of the reflected light.)

Aluminization is now progressing at CERN

Mirror alignment

A third purely vertical ribbon is used to avoid mirror rotation

Piezo Motors 20 Newtons 35 mm range 70 nm resolution

Mirror Support Prototype

Each mirror is supported by a dowel inserted in a hole drilled in the back of the mirror

The orientation of the mirrors is remotely

adjustable using piezo-motors

Aluminum ribbons 200 µm thick

and 10 mm wide are used

NA62 \Lambda

Mirrors support

Front view

Aluminium Honeycomb structure When possible the material budget has been reduced to minimize the total radiation length (RICH is in front of the electromagnetic calorimeter)

INFN

Mirrors support/II

INFN

NA62 \Lambda

Mirror supports/III

Mirrors support/III

Prototype for support MAG2

A prototype of the support with 3 mirrors is under construction

Fundamental to establish the best procedure for the installation of the mirrors in the final support

Also important to understand the ability on mirror orientation

The photomultipliers M62

Winston cones

- 976 PMs packed per spot (18 mm min dist.)
- Light collection: Winston cones with aluminized mylar foil
- Quartz window to separate Neon from air
- O-rings for light tightness and thermal contact

Neon-air separation disk (Quartz window side)

PM lodging disk (PM "face" side)

Detail of a quartz window

Detail of Winston Cones with and without Mylar foils

PM "rear" side: detail Few PMs inserted

The contribution of the FE electronics and of the DAQ to the time resolution is lower than 50 ps

NINO ASIC (from ALICE) as fast discriminator operating in Time over Threshold

new board including custom preamplifiers in development

Read electronics /II

TEL62, developed by Pisa group (evolution of the LHCb TELL1), housing 5 FPGAs for data processing and production of trigger primitives, a Credit Card PC running Linux also included

RICH tests

Since 2007 R&D started to validate the chosen approach with prototypes

2007 Test Beam, RICH100, prototype with 96 PMs to study:

- Time resolution
- Number of photons (multiplicity)
- PMs choice

2009 Test Beam: RICH400, prototype with 414 PMs to study:

- π-µ separation
- Readout system
- Neon pollution

Full length prototypes

NIM A 593 (2008) 314-318 NIM A 621 (2010) 205-211 IEEE TNS 60 (2013) 265-269

RICH 2013 – Hayama – Japan

Conclusions

The NA62 RICH is a far demanding object, it will be fundamental to reduce backgrounds with a muon in the final state and it will measure the flight time of charged particles with a resolution better than 100 ps.

RICH will be also used to generate the L0 trigger signal for charged particles (see G. Lamanna talk)

R&D and tests up to now have validated the project

Installation schedule:

- Jan 2014: RICH vessel delivery
- Jun 2014: Mirrors Installation completed
- Aug 2014: PM installation completed
- Sep 2014: Gas filling completed
- Oct 2014: RICH commissioning and first physics run of NA62

SPARES

Plots from RICH400

RICH 2013 – Hayama – Japan

INFN

^{04/04/13 • 24}

Central mirrors

Central mirrors \II

Central mirrors \III

Central mirrors \IV

