

Prospects for $B \rightarrow \tau \nu$ Branching ratio at Belle II

Michele Aversano¹, <u>**Guglielmo De Nardo²**</u>, Toru Iijima ¹³⁴, Giovanni Gaudino¹⁵, Mario Merola² and Belle II Collaboration Nagoya University ¹, INFN Napoli – University of Napoli Federico II ², Nagoya KMI ³, KEK IPNS ⁴, Scuola Superiore Meridionale ⁵

B1 Heavy Flavor and Dark Matter Joint Unit Symposium, 29-30 March 2023, Nagoya (Japan)

B meson purely leptonic decays $B \rightarrow l \nu$

Very clean theoretically... ...very hard experimentally

in the SM:
$$\mathcal{B}(B \to l\nu) = \frac{G_F^2 m_B}{8\pi} m_l^2 (1 - \frac{m_l^2}{m_B^2})^2 f_B^2 |V_{ub}|^2 \tau_B$$

- Helicity suppression by a factor of m_l^2
- being a b → u transition sensitive to (and suppressed by) |V_{ub}|
- Hadronic uncertainty in the decay costant $f_{\mbox{\scriptsize B}}$ (calculated with lattice QCD)

Mode	ode $\mathcal{B}(B^+ \to \ell^+ \nu_\ell)$					
$\tau \nu_{\tau}$	$(1.01 \pm 0.29) \times 10^{-4}$	Accessible with current data sets				
$\mu \nu_{\mu}$	$\sim 0.45 imes 10^{-6}$	Need Belle II statistics				
$e\nu_e$	$\sim 0.8~ imes 10^{-11}$	Beyond the reach of experiments				

MODER DEED

B meson purely leptonic decays $B \rightarrow l \nu$

Possible test of Lepton Flavor Universality with:

$$R^{\tau\mu} = \frac{\Gamma(B \to \mu\nu)}{\Gamma(B \to \tau\nu)} \qquad \qquad R^{\tau e} = \frac{\Gamma(B \to e\nu)}{\Gamma(B \to \tau\nu)}$$

How to search for leptonic decays $B \rightarrow \tau \nu$ with e⁺ e⁻ B factories

Signal is searched through au decays (1-prong):

• $\tau \rightarrow e \nu_e \nu_\tau$ ~71% of the τ • $\tau \rightarrow \mu \nu_\mu \nu_\tau$ Brancing Fraction • $\tau \rightarrow \pi \nu_\tau$ • $\tau \rightarrow \rho \nu_\tau$ with $\rho \rightarrow \pi^{\pm} \pi^0$

Weak experimental signature: a single charged particle on the signal

Experimental features to exploit:

- Large missing momentum and energy from many (2 or 3) neutrinos
- Particle Identification of the charged particle decay product
- Kinematics constraints from two body decays in sequence for hadronic channels, mass contraint for r channel

...evidence of the companion B meson and nothing else...

Belle II detector and its unique features

Exactly 2 (quantum correlated) B meson produced at Y(4S) and trigger efficiency close to 100%

Belle II will accumulate by 2035 (5 x 10¹⁰ B pairs)

Excellent efficiency and resolution in tracking as well as in detecting photons, π^0 , K_L

Electrons and muon performances both excellent

e+ e- environment is "clean" enough \rightarrow see next slide

B ightarrow au u can be measured only in a clean environment as the one in Belle II

Untagged analyses still doable $(B \rightarrow \mu\nu \text{ and } B \rightarrow e\nu)$

- Inclusive on the rest of the event Apply PID, measure p when the signal signature Ignore the detail strong enough Measure inclusive observables Test for consistency with a B hypothesis μ^+ • $B \rightarrow \pi | v$ Υ(4S) Loose neutrino reconstruction B • $B \rightarrow \mu \nu$ Monochromatic muon in the ν_{μ} final state in B rest frame
 - Smeared in the CM frame

High efficiency and large backgrounds, too

Full event reconstruction (tagged analyses)

- For signal with weak signature like
 - Decay with missing momentum (many neutrinos in the final state)
 - Inclusive analyses
- background rejection improved fully reconstructing the companion B (tag)
- Tag with semileptonic decays
 - PRO: Higher efficiency ε_{tag} ~ 1.5% CON: more backgrounds, B momentum not measured
- Tag with hadronic decays
 - PRO: much cleaner events, B momentum reconstructed CON: smaller efficiency $\epsilon_{tag} \sim 0.2-0.5\%$

Tag with B semileptonic decays

Tag with B hadronic decays

Babar and Belle pioneered a tag reconstruction technique

- reconstructing D/D* mesons in as many as possible decay trees
- Combining the seed D/D* with an hadronic system of charged and neutral pions to make fully reconstructed B candidates.

Many combinations per event!

BaBar determined the purity on experimental data to rank the B decay modes

Belle used a NN tool to determine the quality of the tag (output of the classifer)

This has been refined in Belle II

Belle II Full Event Interpretation (FEI)

-> multivariate method to separate the two B mesons -> hierarchical reconstruction of the B and D decay chains (e.g. $B \rightarrow D n\pi$, $B \rightarrow D^* n\pi$, $B \rightarrow J/\psi K$,...)

• Input variables used to train the multivariate classifiers:

- PID, tracks momenta, impact parameters (charged FS particles);
- cluster info, energy and direction (photons);
- invariant mass, angle between photons, energy and direction (π^0) ;
- released energy, invariant mass, daughter momenta and vertex quality $(D^{(*)}_{(s)}, J/\psi)$;
- the same as previous step plus vertex position, ΔE (B);
- additionally, for each particle the classifier output of the daughters are also used as discriminating variables.

T. Keck et al., "The Full Event Interpretation", Comput. Softw. Big Sci. 3, 6(2019)

Tag side reconstruction

 B^+ B^0 ϵ_{tag} 0.30%0.23%

Tag MVA output > 0.01 (tight requirement to select a sample enriched in good tags)

 $M_{bc}>$ 5.27 GeV

Most discriminating signal (Babar, Belle and Belle II analyses)

No activity expected in the electromagnetic calorimeter is expected*

*after removing the signal τ decays product and and the tag B decay product

Most discriminating variable for signal:

 $\rightarrow E_{ECL}^{extra}$, the extra energy not associated with the B_{tag} and B_{sig} (Rest of Event or ROE).

Signal would peak at low E_{ECL}^{extra} , background smooth increasing function of E_{ECL}^{extra} .

potential peaking background at low energy must be suppressed / correctly estimated.

 E_{ECL}^{extra} between 0 and 1 GeV is used to extract the BR($B \rightarrow \tau \nu$) in our current Belle II analysis

Signal Events Selection

- Particle identification criteria and π^0 reconstruction define four different signal cathegories ($e, \mu, \pi, \rho = \pi\pi^0$)
- Exploit signal kinematics with requirements on missing momentum, charged particle momentum, missing mass
- Continuum suppression exploiting event topology

All the cuts have been optimized:

minimize a figure of merit (FOM) obtained through *Extended Maximum Likelihood fits* on the variable E_{extra} through a study with 10,000 pseudo-experiments (ToyMC study).

$$FOM = \frac{\overline{\sigma}_S}{\overline{N}_S}$$

where \overline{N}_S and $\overline{\sigma}_S$ are the mean signal yield and error of the ToyMC.

Continuum Suppression

Exploit the different topology between **event shapes of continuum and** $B\overline{B}$, i.e. the momentumweighted distribution of all particles in the detector

Many observables available

Input Variables: R2, $Cos\theta_{th}$, Cleo Cones and Kakuno Super Fox-Wolfram ٠ (KSFW) moments: 30 variables

• R2:
$$R_2 = H_2/H_0$$

are the Fox-Wolfram m $H_l = \sum_{i,j} \frac{|\vec{p_i}||\vec{p_j}|}{W^2} P_l(\cos \vartheta_{ij})$

• $\cos\theta_{\text{th}}$: $\left|\cos(\vartheta_{thrust})\right| = \frac{\left|\vec{p}_B \cdot \hat{T}\right|}{\left|\vec{p}_B\right|}$ where T is the thrust axis of the rest of the event

Cleo Cones: momentum flow around the B thrust axis in 9 angular bins ٠

• KSFW:
$$KSFW = \sum_{l=0}^{4} R_l^{so} + \sum_{l=0}^{4} R_l^{oo} + \gamma \sum_{n=1}^{N_t} |(P_t)_n|$$

c: charged,
n: neutral,
m: missing
 $R_l^{so} = \frac{\alpha_{cl} H_{cl}^{so} + \alpha_{nl} H_{nl}^{so} + \alpha_{ml} H_{ml}^{so}}{E_{beam}^* - \Delta E}$
 $| odd \quad H_{cl}^{so} = \sum_i \sum_{jx} Q_i Q_{jx} |p_{jx}| P_l(\cos \theta_{i,jx})$
 $| even \quad H_{xl}^{so} = \sum_i \sum_{jx} |p_{jx}| P_l(\cos \theta_{i,jx})$
 $| even \quad H_{xl}^{so} = \sum_i \sum_{jx} |p_{jx}| P_l(\cos \theta_{i,jx})$
 $| even \quad R_l^{oo} = \sum_j \sum_k \beta_l |p_j| |p_k| P_l(\cos \theta_{j,k})$

so: particles from b-tag and ROE are considered oo: particles from ROE only are considered

17

n:

Few examples showing separation

Continuum Suppression FBDT

We train a multivariate classifier, a Fast Boosted Decision Tree (FBDT), with ones with the highest separation power

Samples

- Sig \rightarrow MC $q\bar{q} + \tau^+\tau^-$ (Continuum) Train/Test \rightarrow 80%/20%
- Bkg \rightarrow MC $B\bar{B}$

- Sig/Bkg events ratio = 1

Signal Events Selection optimization by grid search

Best Cuts:

	e ID μ	u ID	sigProb(FEI)	M_{bc} (GeV)	pt candidate (GeV)	ContSupp	Miss M^2 (GeV²)	FOM
е	>0.9		>0.01	>5.27	>0.5	<0.85	>12	0.59
μ	>	>0.9	>0.01	>5.27	>0.5	<0.7	>11	0.74

 $missM^2$: missing Mass² associated to ROE.

Signal Events Selection

Best Cuts:

	e ID	μID	sigProb(FEI)	M_{bc} (GeV)	p candidate (GeV)	ContSupp	Miss M^2 (GeV ²)	FOM
π	<0.9	<0.9	>0.01	>5.27	>1.5	<0.4	>1	1.11
ρ	<0.9	<0.9	>0.01	>5.27	>1.5	<0.4	>1	1.45

$BR(B \rightarrow \tau \nu)$ Extraction

The Branching ratio BR is estimated by means of a maximum likelihood fit on E_{extra} simultaneously on the four τ decay modes (the BR being a common parameter)

The Likelihood for each k-mode:

$$L_{k} = \frac{e^{-(n_{s,k}+n_{b,k})}}{(n_{s,k}+n_{b,k})!} \prod_{i=1}^{n_{s,k}+n_{b,k}} \{n_{s,k} \cdot P_{k}^{s}(E_{extra}^{i,k}) + n_{b,k} \cdot P_{k}^{b}(E_{extra}^{i,k})\} \quad n_{s,k} \in n_{b,k} \text{ sig and bkg yields.}$$

Where:

$$n_{s,k} = N^{MEASURED}(\tau \rightarrow k - mode) = N_{BB} \cdot \epsilon_k \cdot BR(B \rightarrow \tau \nu)$$

 $(k = e \cup \pi o)$

- PDFs of signal and background are taken from the MC simulation.
- Largest source of systematics are MC mismodelling of signal efficiency (including the tag B reconstruction) and PDF shapes.
- Data control sample are used to study this effects and extract correction factor with systematics uncertainties

Tag side MC / data corrections

Belle II Coll., arXiv:2008.06096

Control sample of inclusive semileptonic decays

Mostly used for extract tag B reconstruction efficiency from data

Double tags

Two B_{tag} (opposite charge) - Reconstruction of $\Upsilon(4S) \rightarrow B^+B^-$. Loose cuts:

- $M_{bc} > 5.24 \; GeV$
- $|\Delta E| < 0.3 \ GeV$
- TagProb > 0.001
- $\cos \theta_{\text{thrust}} < 0.9$

Best Candidate selection with respect to the Tag Probability of the first B_{tag}

0 Extra Tracks in the rest of event.

Off-resonance data – no B expected

On-resonance data – fully reconstructed $Y(4S) \rightarrow B^+B^-$

Extra cluster characterization from double tag study

Energy of un-assigned clusters in the electromagnetic calorimeter from MC simulation augmented with beam backgrounds from experimental data

$BR(B \rightarrow \tau \nu)$ extraction with ToyMC

The sensitivity is estimated by producing 10,000 pseudo-datasets by a *Simultaneous fit* on E_{extra} between 0 and 1 *GeV*.

- **BR** set to the PDG value. $BR_{PDG}(B \rightarrow \tau \nu) = (1.09 \pm 0.24) \times 10^{-4}$
- PDFs from the MC.

The Likelihood for each k-mode:

$$L_k = \frac{e^{-(n_{s,k}+n_{b,k})}}{(n_{s,k}+n_{b,k})!} \prod_{i=1}^{n_{s,k}+n_{b,k}} \{n_{s,k} \cdot P_k^s(E_{extra}^{i,k}) + n_{b,k} \cdot P_k^b(E_{extra}^{i,k})\} \quad n_{s,k} \in n_{b,k} \text{ sig and bkg yields.}$$

Where:

$$n_{s,k} = N^{MEASURED}(\tau \to k - mode) = N_{BB} \cdot \epsilon_k \cdot BR(B \to \tau \nu)$$

 $(k = e \parallel \pi 0)$

$BR(B \rightarrow \tau \nu)$ extraction with ToyMC

The sensitivity is estimated by producing 10,000 pseudo-datasets by a *Simultaneous fit* on E_{extra} between 0 and 1 *GeV*.

• **BR** set to the PDG value. $BR_{PDG}(B \rightarrow \tau \nu) = (1.09 \pm 0.24) \times 10^{-4}$

ToyMC result for 362 fb⁻¹:

$BR(B \rightarrow \tau \nu)$ extrapolation with ToyMC

Extrapolation of statistical uncertainty with toy MC assumimng PDG branching ratio

Toward a 5 σ measurment with a single measurement around 1 ab⁻¹

At $\sim 50~ab^{\text{-1}}$ the systematics dominate the uncertainty*

systematics uncertainty extrapolation from Belle II Physics Book: Belle II Coll., Prog. Theor. Exp. Phys. 2019, 123C01 arXiv:1808.10567

Conclusions

- It's important to have a measurement of the purely leptonic decay BR(B o au
 u) from Belle II
 - Complements on-going determinations of semileptonic decays with τ lepton branching ratio from Belle II and LHCb
 - Belle and BaBar measurements a bit in tension and call for an improvement in precision.
 - It appears to be possible only at Belle II
- A Belle II analysis with hadronic B tags is on-going and we are aming at a public result by summer 2023