CLFV searches using DC muon beam at PSI Satoshi MIHARA KEK / Sokendai

Contents

- Introduction
- World's most intense DC muon beam at PSI
- MEG, MEG II
- Mu3e

cLFV Searches using muon

- No sign of new physics from High Energy Frontier experiments so far
- Survey a large area in high energy region using forbidden process in SM with extremely large statistics
 - Role of Flavor Physics
- No SM background in muon LFV process
- Intense muon beam at high-power proton machines

- DC beam for coincidence experiments
 - $\mu \rightarrow e \gamma$, $\mu \rightarrow e e e$

- DC beam for coincidence experiments
 - $\mu \rightarrow e \gamma$, $\mu \rightarrow e e e$

- DC beam for coincidence experiments
 - $\mu \rightarrow e \gamma$, $\mu \rightarrow e e e$

- Pulse beam for noncoincidence experiments
 - μ -e conversion

 DC beam for coincidence experiments Pulse beam for noncoincidence experiments

for Advanced Studies

• $\mu \rightarrow e \gamma$, $\mu \rightarrow e e e$

μ-e conversion

PSI Cyclotron

• 2.2mA at 590 MeV: 1.3MW beam power

PSI DC Muon Beam

72 MeV 590 MeV 1.2 GeV/c ca. 0.2 % ca. 2π mm×mrad 2.2 mA DC 50.63 MHz 19.75 ns ca. 0.3 ns ca. 0.03%

Signal and Background

Signal

• $E \gamma = Ee^+ = 52.8 \text{ MeV}$

- Back to back
- time coincidence

Background

- Radiative muon decay
 A
- Εγ, Ee⁺ < 52.8 MeV
 - any angle
 - time coincidence

- Accidental
- Εγ, Ee⁺ < 52.8 MeV
 - any angle
 - flat in time

Signal and Background

Signal

- $E \gamma = Ee^+ = 52.8 \text{ MeV}$
- Back to back
- time coincidence

Background

- Radiative muon decay
- Eγ, Ee⁺ < 52.8 MeV
 - any angle
 - time coincidence

- Accidental
- $E\gamma$, $Ee^+ < 52.8$ MeV
 - any angle
 - flat in time
 e⁺ BG

Eur. Phys. J. C 73 (2013) 2365

The MEG Detector

- Beam transport system
- Liquid xenon gamma-ray detector
- Positron spectrometer

MEG Data Summary

MEG Data Analysis Procedure

- Analysis box (containing 0.2% data) was blinded during calibration and optimization of physics analysis
- Side band data (16%) to study background
 - Michel positrons for positron detector response study
 - RMD with low gamma energy to evaluate timing resolutions
- Detector responses (PDFs) from data
- The numbers of signal (S), radiative-muon decay (R), and accidental background (A) events are determined in a maximum likelihood method.

 $\mathcal{L}(\vec{x}_1, \dots, \vec{x}_N, R_\diamond, A_\diamond | \hat{S}, \hat{R}, \hat{A}) = \frac{e^{-\hat{N}}}{N!} e^{-\frac{1}{2} \frac{(A_\diamond - \hat{A})^2}{\sigma_A^2}} e^{-\frac{1}{2} \frac{(R_\diamond - \hat{R})^2}{\sigma_R^2}} \prod_{i=1}^N \left(\hat{S}s(\vec{x}_i) + \hat{R}r(\vec{x}_i) + \hat{A}a(\vec{x}_i) \right)$

Event Distribution

- Signal PDF contours at 1, 1.64, and 2 sigmas
- No excess in the data distribution

Highly Ranked Events

Run:102907 Event:559

 $(E_{\gamma}=50.27 \text{MeV}, E_{e}=52.34 \text{MeV}, T_{e\gamma}=-78.7 \text{ps}, \Phi_{e\gamma}=17.83 \text{mrad}, \theta_{e\gamma}=7.77 \text{mrad})$

Run:123579 Event:1318 (E_{γ} =55.13MeV, E_{e} =52.89MeV, $T_{e\gamma}$ =-14.9ps, $\Phi_{e\gamma}$ =5.58mrad, $\theta_{e\gamma}$ =-25.27mrad)

PRL 110 (2013) 201801

MEG Data Analysis C.L.

ネルギー加速器研究機構

MEG-I Conclusion

- MEG-I set the world's most stringent cLFV limit of Br(μ→eγ) < 5.7x10⁻¹³ at 90% C.L.
- Data acquisition finished in 2013
 - 2012-2013 data in analysis
- Final MEG-I result will show up in this summer

Target Sensitivity of 5x10⁻¹⁴ at 90% C.L.

arXiv:1301.7225

MEG II

Upgrades in MEG II toward 5x10⁻¹⁴

- Increased beam intensity (7×10⁷ μ +/s)
- Thinner (140 μ m) or active target
- Enlarged cylindrical single-volume DC
- Pixelated TCs with SiPM readout
- New high-bandwidth DAQ boards
- Enlarged LXe volume, SiPM readout
- Radiative Muon Decay counters

Upgrades in MEG II toward 5x10⁻¹⁴

- Increased beam intensity (7×10⁷ μ +/s)
- Thinner (140 μ m) or active target
- Enlarged cylindrical single-volume DC
- **Pixelated TCs** with SiPM readout
- New high-bandwidth DAQ boards
- Enlarged LXe volume, SiPM readout
- Radiative Muon Decay counters

Photon Detector Upgrade

Present: 216 PMTs on inner face

The Graduate University for Advanced Studies

- Replace 216 inner face PMTs to newly developed SiPM
- Expand the native volume along the z-direction
- Upgrade of the cryogenics

- Remove protective layer
- Fit anti-reflective coating to LXe refraction index
- Protect with quartz

Photon Detector Upgrade

- Replace 216 inner face PMTs to newly developed SiPM
- Expand the native volume along the z-direction
- Upgrade of the cryogenics

- Remove protective layer
- Fit anti-reflective coating to LXe refraction index
- Protect with quartz

Present: 216 PMTs on inner face

e Graduate University for Advanced Studie

Positron Detector Upgrade

18

DC Upgrade

EVENT 1

- Single-volume, low-Z gas mixture (He:iC₄H₁₀ = 85:15)
- 1200 sense wires (2mL, 20 μ m) with stereo angle (7°)

- TC Upgrade
- Pixelated fast plastic scintillator
- Multiple-SiPM readout

MEG II Sensitivity

$\mu \rightarrow eee$ Search using DC Muon Beam

- Another channel sensitive to cLFV with DC muon beam
 - 1.0x10⁻¹² (90% C.L.) by SINDRUM
 - Goal : 10⁻¹⁶ in 3 steps
- Measure all electron tracks precisely
- most severe BG
 - $\mu^+ \rightarrow e^+ e^+ e^- \overline{\nu} \nu$

22

•

- High granularity (occupancy)
- Close to target (vertex resolution)
- 3D space points (reconstruction)
 - Minimum material (momenta below 53 MeV/c)

22

•

- High granularity (occupancy)
- Close to target (vertex resolution)
- 3D space points (reconstruction)
 - Minimum material (momenta below 53 MeV/c)
- Gas detectors do not work (space charge, aging, 3D)

22

- High granularity (occupancy)
- Close to target (vertex resolution)
- 3D space points (reconstruction)
- Minimum material (momenta below 53 MeV/c)
- Gas detectors do not work (space charge, aging, 3D)
- Silicon strips do not work (material budget, 3D)

22

- High granularity (occupancy)
- Close to target (vertex resolution)
- 3D space points (reconstruction)
- Minimum material (momenta below 53 MeV/c)
- Gas detectors do not work (space charge, aging, 3D)
- Silicon strips do not work (material budget, 3D)
- Hybrid pixels (as in LHC) do not work (material budget)

High voltage monolithic active pixel sensors - Ivan Perić

• thinned down to < 50 μ m

NIM A 582 (2007) 876

 Logic on chip: Output zero suppressed hit addresses and timestamps

MuPix2

5 generations of prototypes, MuPix7 is current generation with all features of final sensors

or Advanced Studies

Detector Building

• $50\,\mu\,\mathrm{m}$ silicon

• $25 \mu m$ KaptonTM flexprint with AI traces

- $25 \mu m \text{ Kapton}^{\text{TM}}$ frame
- Less than 1% R.L. per layer

 He cooling for 2kW heat generation from the chips

for Advanced Studie

_{共同利用機関法人} Eネルギー加速器研究機構

Timing Measurement

- Precise timing measurement is critical to reduce accidental BGs
 - Scintillating fibers O(1nsec)
 - Scintillating tiles O(100psec)

SiPM and ASIC

ational University

SOKENDAI

rsity for Advanced Studies

PiE5 Layout Scheme for MEG II & Mu3e I

- Both experiments have similar requirements $O(10^8) \mu^+/s$, 28MeV/c
- Compact muon beam line for Mu3e allowing both to co-exist

Mu3e CMBL Proof of Principle

Summary

- Unique muon beam at PSI
 - High intensity O(10⁸) μ^+ /sec DC beam
 - R&D to improve by a factor of 20
- MEG completed successfully
 - The result is just around the corner
- MEG II preparation is in good shape
 - Improve the sensitivity by a factor of 10 to reach $5x10^{-14}$
- Mu3e detector R&D in progress toward the start of a beautiful experiment using new technology

Thanks to

- MEG & MEG II collaboration
- Nik Burger for Mu3e contents

Thanks to

- MEG & MEG II collaboration
- Nik Burger for Mu3e contents

and FPCP2015 organizer

