First Measurement of the τ Lepton Polarization in the Decay $B \to D^* \tau^- \overline{\nu_{\tau}}$ at Belle S. Hirose et al. (Belle Collaboration), arXiv:1612.00529 (submitted to Phys. Rev. Lett.) BELLE The decay $\bar{B} \rightarrow D^* \tau^- \bar{\nu}_{\tau}$ is predicted to be sensitive to new physics including a non-universal coupling over the three generation. We report

the first measurement of the au polarization $P_{ au}(D^*)$ and a new measurement of the ratio of the branching fractions $R(D^*) = BF(\bar{B} \rightarrow D^* \tau^- \bar{\nu}_{\tau})/BF(\bar{B} \rightarrow D^* l^- \bar{\nu}_l)$ using the full data sample containing $(7.72 \pm 0.11) \times 10^8 B\bar{B}$ pairs accumulated at the Belle experiment. We reconstruct signal events from $\tau^- \rightarrow \pi^- v_{\tau}$ and $\rho^- v_{\tau}$. Our measurement results in $P_{\tau}(D^*) = -0.38 \pm 0.51$ (stat.) $^{+0.21}_{-0.16}$ (syst.) and $R(D^*) = 0.270 \pm 0.035$ (stat.) $^{+0.028}_{-0.025}$ (syst.). These are consistent with the SM prediction.

Shigeki Hirose (Nagoya University, Japan), Toru lijima (Nagoya U.) and the Belle Collaboration

Belle Experiment <u>B-factory at the e^+e^- Collider KEKB</u>

- e^+e^- collision at 10.58 GeV,

Signal Extraction

- $E_{\rm ECL}$ is a linear energy sum of the remaining clusters in ECL
- This is the best variable in terms of
- good background discrimination
- very small correlation to $P_{\tau}(D^*)$

Hadronic B Background Calibration

- Important background component:
- similar event topology to the signal
- huge uncertainty due to low energy hadronization process
- Strategy for the yield determination
- Calibrate composition of hadronic B decays modes using data
- Determine the yield in the final fit

 $R(D^*)$

ן<mark>4</mark>|∾א

Calibration Method

- Fully reconstruct seven specific B decay modes
- Compare the yields between the MC and the data \rightarrow Take the yield ratio
- The ratio is used as a calibration factor for the yield in the MC The observed discrepancy is

Summary

Using hadronic $\bar{\tau}$ decays $\tau^- \rightarrow \pi^- \nu_{\tau}$ and $\rho^- \nu_{\tau}$, we measured $P_{\tau}(D^*)$ as well as $R(D^*)$. One of the difficulties in the $P_{\tau}(D^*)$ measurement was that the full τ momentum could not be obtained. We have established the $P_{\tau}(D^*)$ measurement method using the rest frame of W and the symmetry in the decay kinematics. To cope with background from hadronic *B* decays, we have calibrated the composition of the decay modes using the calibration data samples. Our measurement results in $P_{\tau}(D^*) = -0.38 \pm 0.51(\text{stat.}) \, {}^{+0.21}_{-0.16}(\text{syst.}),$ $R(D^*) = 0.270 \pm 0.035(\text{stat.}) \stackrel{+0.028}{_{-0.025}}(\text{syst.}),$ consistent with the SM prediction. Our study has demonstrated the polarization measurement in $\overline{B} \rightarrow$ $D^*\tau^-\bar{\nu}_{\tau}$, that gives an additional dimension in the NP searches with the semitauonic *B* meson decays.