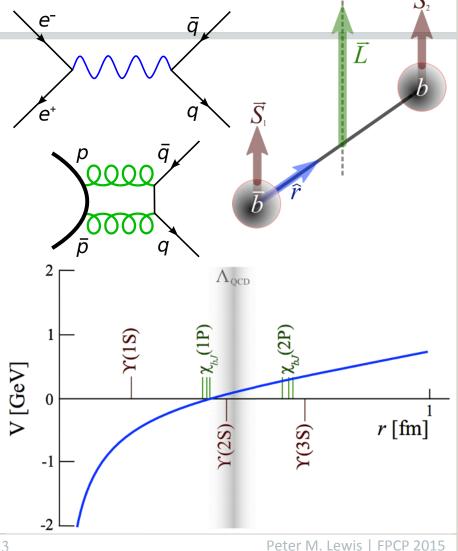


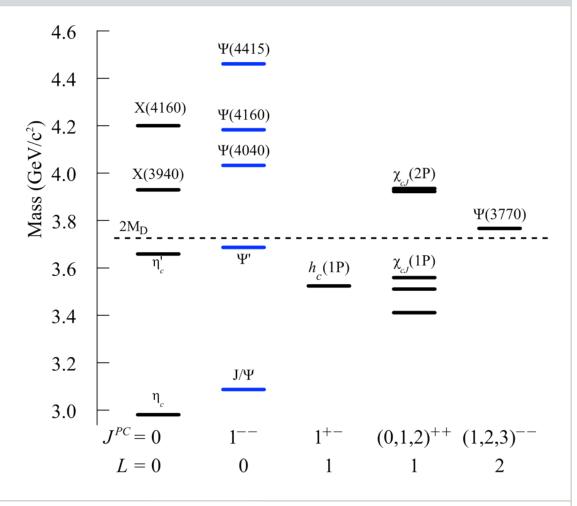
Recent results in quarkonium production and decays Peter M. Lewis | University of Hawai`i on behalf of the BaBar and Belle Collaborations

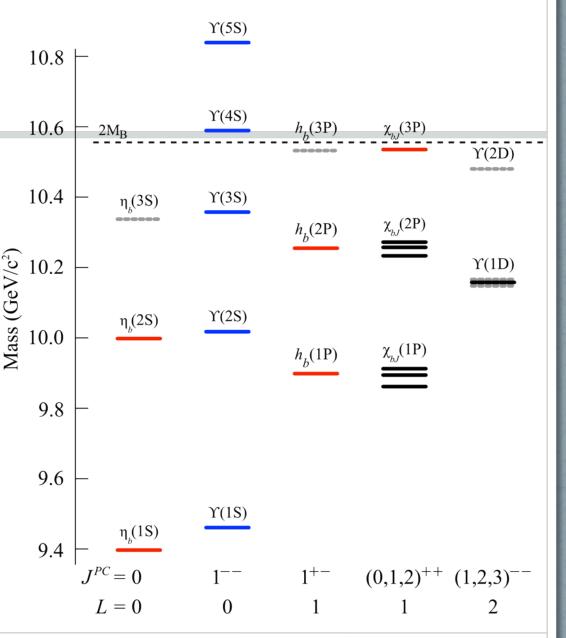
FPCP2015 NAGOYA FLAVOR PHYSICS & CP VIOLATION Nagoya, Japan, May 25 – 29, 2015


Contents

- Quarkonium
 - Charmonium
 - Bottomonium
- Spectroscopy and production
- Y(5S)
- Decays
- Double charmonium production
- Outlook

Quarkonium


- $car{c}$ and $bar{b}$ bound states $n^{2S+1}L_J$
- Produced at *B*-factories via virtual photons and • at hadron colliders via gluons
- Excellent features for probing QCD:
 - A rich array of stable bound states
 - High masses; simple nonrelativistic positronium-• like potential models
 - Resolvable relativistic corrections
 - Spans transition region between confinement and asymptotic freedom
 - Transitions are soft and test non-perturbative QCD calculations
 - Below open-flavor thresholds, widths are narrow and radiative decays are competitive
- There's a great value in precision measurements of production and decays in heavy quarkonia [but you won't see me write "NP"]

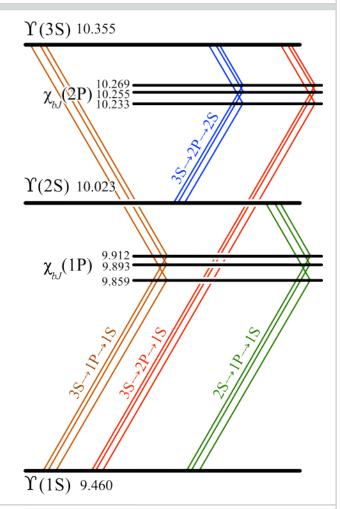

Charmonium

- [simplified view]
- **Blue**: producible in e^+e^- annihilation.

Bottomonium

- Open-flavor threshold is above Y(3S) mass; more visible states
- Very high mass; nonrelativistic descriptions and mass eigenstates
- **Blue**: producible in e^+e^- annihilation.
- Dotted: not yet observed.
- **Red**: first observed 2008 or later (Y(2,3S) data first available from Belle and BaBar plus commissioning of LHC)

Spectroscopy and production

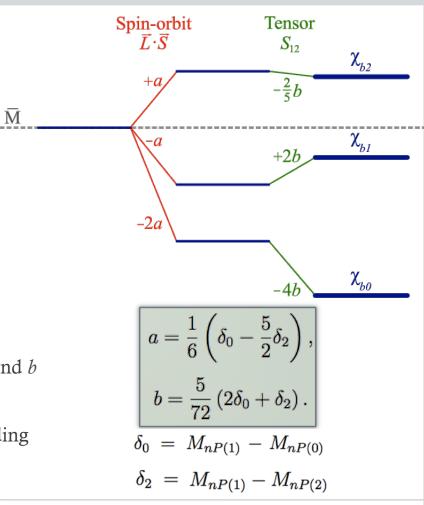


Radiative bottomonium spectroscopy at BaBar

- Comprehensive exclusive analysis of E1 radiative transitions involving the triplet *P* states using (121±1)x10⁶ Y(3S) and (98±1)x10⁶ Y(2S) mesons
- Final states: $\gamma\gamma\mu^+\mu^-$
- Two analysis techniques:
 - Calorimeter photons
 - One calorimeter plus one converted photon
- New beam background rejection using calorimeter timing
- Fit to the energy spectrum of the soft photon (calorimeter analysis) or hard photon (converted analysis) to obtain branching fractions
- Targeting particularly:
 - $\chi_{b0}(2P) \rightarrow \gamma Y(2S)$
 - $\chi_{b0}(2P) \rightarrow \gamma Y(1S)$
 - $\chi_{b0}(1P) \rightarrow \gamma Y(1S)$
 - $Y(3S) \rightarrow \gamma \chi_{b0}(1P)$
 - Fine mass splittings of $\chi_{bJ}(1,2P)$

Radiative bottomonium spectroscopy at BaBar

NRO

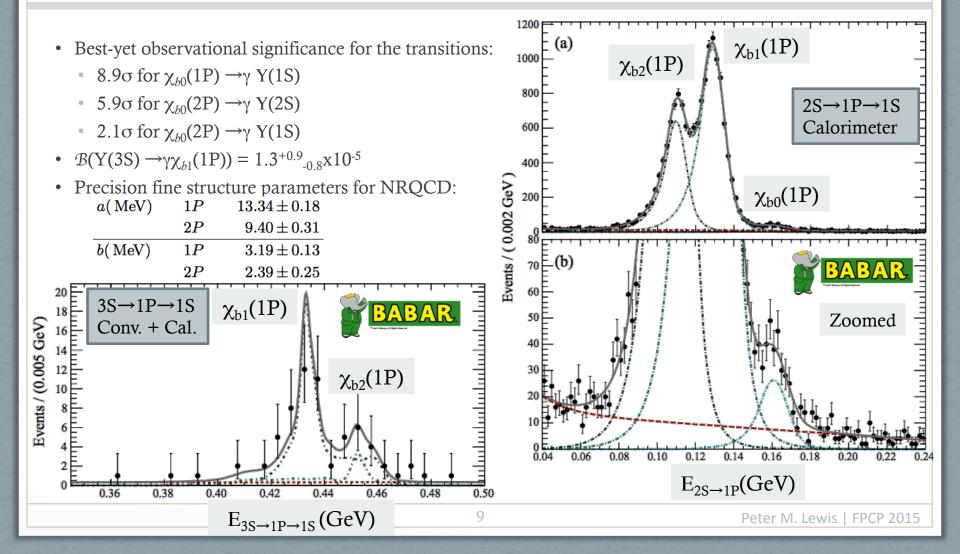

PRD 90 112010 (2014)

• Expectation value of effective Hamiltonian in nonrelativistic QCD [NRQCD] gives χ_b masses:

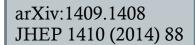
$$M_{nP(J)} = \overline{M_{nP}} + a \left\langle \mathbf{L} \cdot \mathbf{S} \right\rangle + b \left\langle S_{12} \right\rangle + c \left\langle \mathbf{S_1} \cdot \mathbf{S_2} \right\rangle$$

$$egin{aligned} M_{nP(2)} &= \overline{M_{nP}} + a - 2b/5, \ M_{nP(1)} &= \overline{M_{nP}} - a + 2b, \ M_{nP(0)} &= \overline{M_{nP}} - 2a - 4b, \end{aligned}$$

- The coefficients *a*, *b* and *c* correspond to spin-orbit, tensor, and spin-spin interactions (*c* drops out)
- In the past, theorists have checked *a* and *b* against absolute masses, such as from the PDG
- But mass *splittings* can determine the parameters *a* and *b* with much lower systematic error (bottom right)
- As a "bonus," this BaBar analysis provides highprecision measurements of *a* and *b* (also corresponding lattice coefficients)

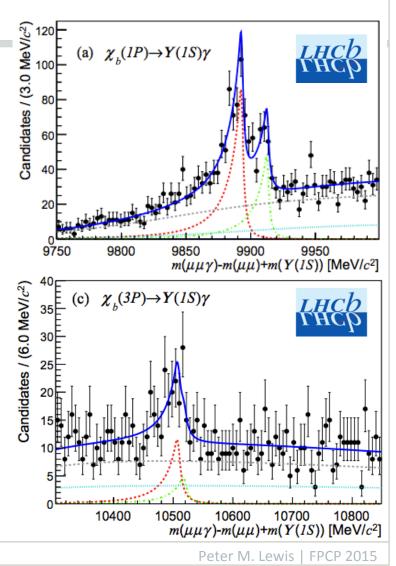


Radiative bottomonium spectroscopy at BaBar


Results

PRD 90 112010 (2014)

χ_{bJ} production via converted photons at LHCb

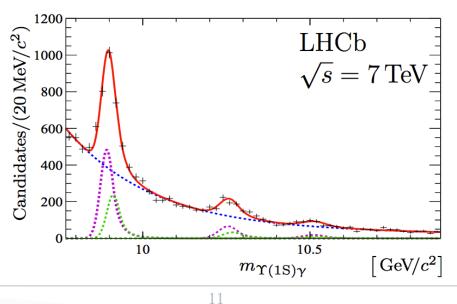


- Converted photon χ_{bJ} spectroscopy using 3.0 fb⁻¹ at 7 and 8TeV, covering χ_{bJ} rapidity range 2.0-4.5
- $\chi_{bJ}(nP) \rightarrow \gamma Y(mS)$; $Y(mS) \rightarrow \mu^+ \mu^-$, with γ converted to e^+e^- pair in detector material
 - Excellent resolution; χ_{bJ} mass splittings resolvable (except for 3P)
- Fit double Crystal Ball functions to *J*=1, 2 peaks
- Results (3.6 σ significance for χ_{bJ} (3P) peak)

 $m(\chi_{b1}(3P)) = 10515.7^{+2.2}_{-3.9}(\text{stat})^{+1.5}_{-2.1}(\text{syst}) \text{ MeV}/c^2$ $\Delta m_{12}(1P) = 19.81 \pm 0.65(\text{stat}) \pm 0.20(\text{syst}) \text{ MeV}/c^2$

 $\Delta m_{12}(2P) = 12.3 \pm 2.6(\text{stat}) \pm 0.6(\text{syst}) \text{ MeV}/c^2$

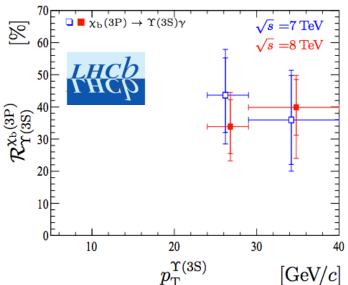
- Splittings consistent with BaBar results (previous slides):
 - $\Delta m_{12}(1P)=19.01 \pm 0.24 \text{ MeV/c}^2$
 - $\Delta m_{12}(2P)=13.04 \pm 0.26 \text{ MeV/c}^2$



Exclusive χ_b production at LHCb

arXiv:1407.7734 Eur. Phys. J. C 74 (2014) 3092.

- Same dataset; calorimeter photons, not converted
- Final state: μμγ
- A measurement of the fractio $\mathcal{R}_{\Upsilon(nS)}^{\chi_b(mP)}$ mesons originating from radiative decays of χ_b mesons
- Feed-down contribution from χ_b 's helps interpretation of *S*-wave polarization
- Corrected mass distributions for selected χ_b candidates, below, decaying into Y(1S)

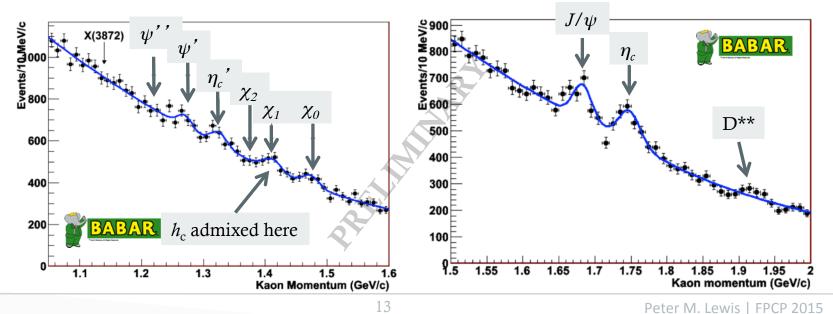

Exclusive χ_b production at LHCb

arXiv:1407.7734 Eur. Phys. J. C 74 (2014) 3092.

- Same dataset; calorimeter photons, not converted
- Final state: μμγ
- A measurement of the fractions of Y mesons originating from radiative decays of χ_b mesons $\mathcal{R}_{\Upsilon(nS)}^{\chi_b(mP)}$
- Feed-down contribution from χ_b 's helps interpretation of *S*-wave polarization
- Corrected mass distributions for selected χ_b candidates, right, decaying into Y(1S), top, Y(2S), middle and Y(3S), bottom

Results:

- A first observation of the $\chi_b(3P) \rightarrow Y(3S)$ transition $\mathfrak{P}_{\chi_b(3P)}^{\chi_b(3P)}$
- $\mathcal{R}^{\chi_b(\overline{3P})}_{\Upsilon(3S)}$ is **large**; feed-down may not be negligible, as is often assumed when comparing with theory
- 3P mass comparable to conversions analysis:
 - $m(\chi_{b1}(3P)) = 10511.3 \pm 1.7 \pm 2.5 \text{ MeV}/c^2$

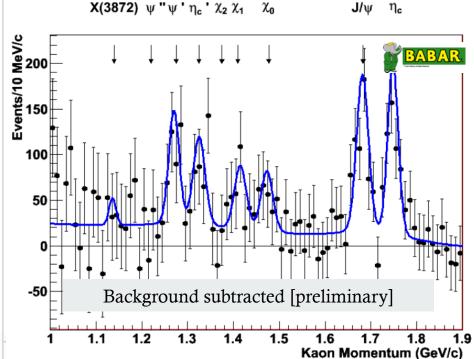


[Preliminary] Update on inclusive charmonium production in B^{\pm} decays

Not yet on arXiv

- Two-body decays $B^{\pm} \rightarrow X_{cc} + K^{\pm}$
 - 424 fb⁻¹ (210 fb⁻¹ in original study)
 - X_{cc} state has large available phase space; charmonia are produced with roughly equal rate
 - Direct measurement of branching fractions B(B [±]→X_{cc}+K[±])
 - Range increased from previous analysis

- Inclusive approach
 - Tag one *B*
 - Boost into COM frame of the second *B*
 - Look at kaon momentum in that frame
 - Continuous background
 - Monochromatic peaks from decays to charmonium



[Preliminary] Update on inclusive charmonium production in B^{\pm} decays

Not yet on arXiv

Peter M. Lewis | FPCP 2015

- Results
 - An improvement in B(B[±]→X_{cc}+K[±]) for all channels (right)
 - Null results for search of momentum spectrum of K^{\pm} recoiling against B^0 **X(3872)** ψ " ψ ' η_c ' $\chi_2 \chi_1 \chi_0 J/\psi$

Particle	Yield	Peak Position	Width	$BF(10^{-4})$
J/ψ	516 ± 67			$9.6 \pm 1.2 (sta) \pm 0.8 (sys)$
η_c	655 ± 77	$2982{\pm}5$	<43	$13.3 \pm 1.8(\text{stat}) \pm 0.4(\text{sys}) \pm 0.3(\text{ref})$
χ_{c0}	$218{\pm}76$		\sim	$4.4{\pm}0.9$
χ_{c1}	$192{\pm}35$			$7.0{\pm}1.3({ m stat}){\pm}1.0({ m sys})$
χ_{c2}	0 ± 32			<1.2
η_c (2S)	$283{\pm}94$	$3632{\pm}0.007$	<33	$6.0{\pm}2.1({ m stat}){\pm}0.4({ m sys})$
ψ'	293 ± 90			$6.2{\pm}2(\mathrm{stat}){\pm}0.6(\mathrm{sys})$
$\psi(3770)$	0 ± 49			<2.0
X(3872)	75 ± 81			$1.4{\pm}1.5 \text{ or } < 4.4$

Y(5S)

Relative rates of strong transitions from the "Y(5S)" resonance at Belle

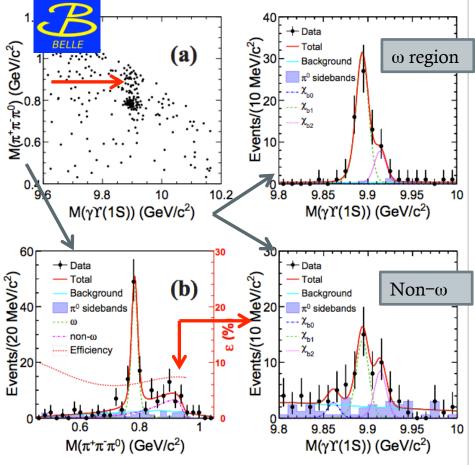
Measurements of $\sigma(e^+e^- \rightarrow Y(nS)\pi^+\pi^-)$ and $\sigma(e^+e^- \rightarrow bb)$ in the Y(10860) and Y(11020) resonance region arXiv:1501.01137 Sub. to PRL

- What is "Y(5S)"?
 - Previous Belle results: rates for Y(*n*S) →π⁺π⁻Y(*m*S) are two orders of magnitude greater for *n*=5 than for *n*=2,3,4
 - Rate to $h_b(mP)$ states is anomalously high
 - "Y(5S)" is not exactly Y(5S)
- Use 121.4 fb⁻¹ from Y(5S) mass plus 77 other scan points between 10.63 and 11.05 GeV ("Y(6S)")
- Compare cross sections to muon-pair Born cross section:
 - Open decays: $R_b = \sigma(e^+e^- \rightarrow bb) / \sigma^0_{\mu\mu}$
 - Transitions: $R_{Y\pi\pi} = \sigma(e^+e^- \rightarrow Y(nS)\pi^+\pi^-)/\sigma^0_{\mu\mu}$ (n=1,2,3)
- Fit resonances, coherent and incoherent continuum
- Results
 - R_b results are **paradoxical**, likely due to poorly modeled *bb* background; this method is suspect
 - (also no sign of 10.91 GeV tetraquark candidate)

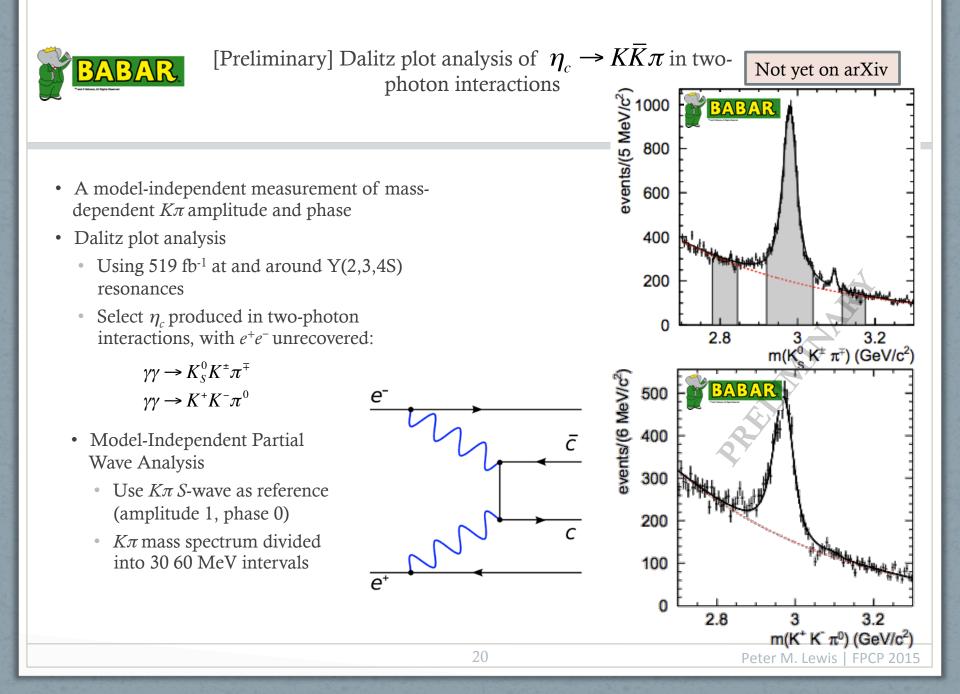
 $B_{(s)}^{(*)}\overline{B}_{(s)}^{(*)}(\pi)$ Rı 0.4 0.3 0. 0 .75 10.8 10.85 10.9 10.95 √s (GeV)

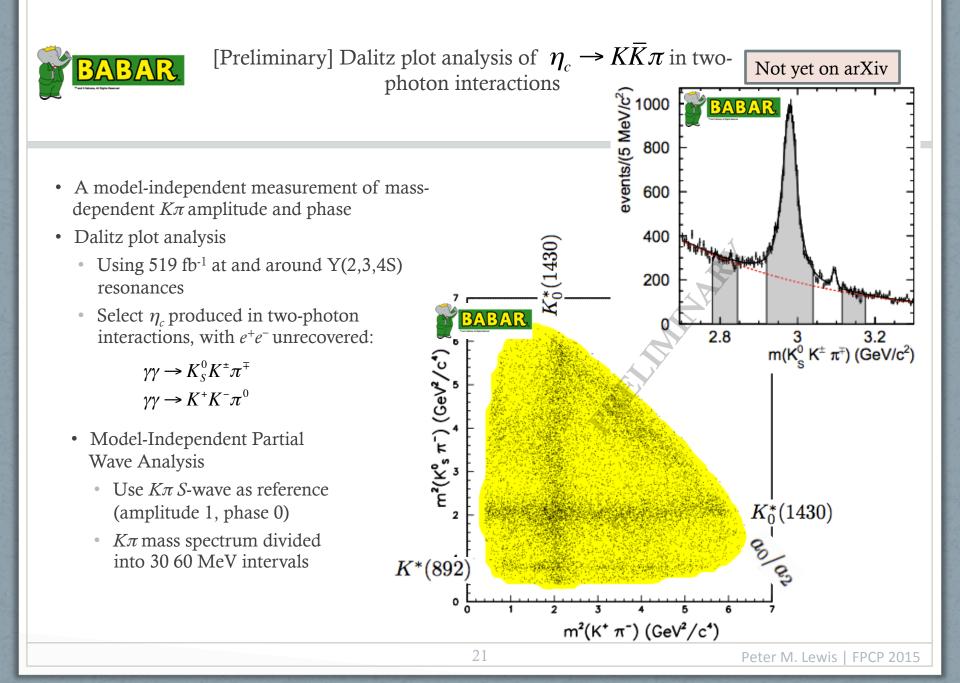
Relative rates of strong transitions from the "Y(5S)" resonance at Belle Measurements of $\sigma(e^+e^- \rightarrow Y(nS)\pi^+\pi^-)$ and $\sigma(e^+e^- \rightarrow bb)$ in the Y(10860) and Y(11020) resonance region arXiv:1501.01137 Sub. to PRL

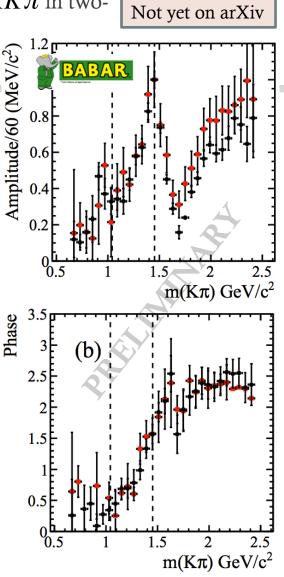
R_{T(1S)mπ}×10 $R_{Y\pi\pi}$ 0 ۲_{۲′(2S)∞π}×10 R_{r(3S)m}×10³ 10.6 10.65 10.7 10.75 10.8 10.85 10.9 10.95 11 11.05 √s (GeV)


- What is "Y(5S)"?
 - Previous Belle results: rates for Y(*n*S) →π⁺π⁻Y(*m*S) are two orders of magnitude greater for *n*=5 than for *n*=2,3,4
 - Rate to *h_b(mP)* states is anomalously high
 - "Y(5S)" is not exactly Y(5S)
- Use 121.4 fb⁻¹ from Y(5S) mass plus 77 other scan points between 10.63 and 11.05 GeV ("Y(6S)")
- Compare cross sections to muon-pair Born cross section:
 - Open decays: $R_b = \sigma(e^+e^- \rightarrow bb) / \sigma^0_{\mu\mu}$
 - Transitions: $R_{Y\pi\pi} = \sigma(e^+e^- \rightarrow Y(nS)\pi^+\pi^-)/\sigma^0_{\mu\mu}$ (n=1,2,3)
- Fit resonances, coherent and incoherent continuum
- Results
 - R_b results are **paradoxical**, likely due to poorly modeled *bb* background; this method is suspect
 - (also no sign of 10.91 GeV tetraquark candidate)
 - R_{Yππ} is nearly free from *bb* continuum but lower statistics;
 Y(5S) is "essentially saturated" by bottomonium(-like) modes
 - First measurements of $M_{Y(6S)}$ and $\Gamma_{Y(6S)}$ and relative phase $\phi_{Y(6S)}\text{-}\phi_{Y(5S)}$, using $R_{_{Y\pi\pi}}$

Exclusive hadronic transitions from the "Y(5S)" resonance


Observation of $e+e- \rightarrow \pi+\pi-\pi0 \chi$ bJ and search for $Xb \rightarrow \omega Y(1S)$ at $\sqrt{s} \sim 10.867$ GeV PRL 113, 142001 (2014)

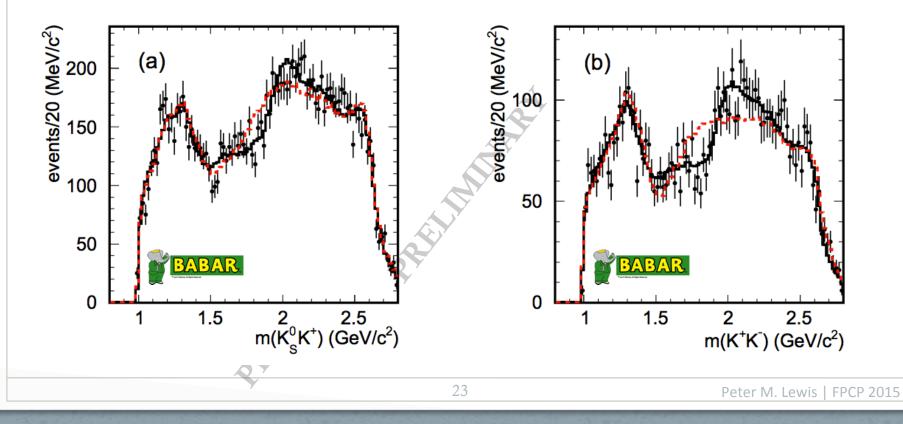

- A different approach to probing Y(5S)
 - Look at $\pi^{+}\pi^{-}\pi^{0}\chi_{bJ}$ in Y(5S) run (118 fb⁻¹ at \sqrt{s} = 10.867 GeV)
 - Select χ_{bJ} from $\gamma l^+ l^- (\mu \text{ or } e)$
 - Look for ω resonance in π⁺π⁻π⁰ invariant mass spectrum
- Results and implications:
 - Clear χ_{bJ} peaks for J=1,2 from both ω resonance and non-resonance signals
 - Results also show an accumulation of non-ω events (red arrows)
 - Since preliminary results were released last summer there has been a lot of theoretical interest; the "Y(5S)" remains weird



Results:

- Phase and amplitude for η_c agree for both modes (right)...
- ...but amplitude strongly disagrees with E791 and LASS results
- The $K_0^*(1430)$ resonance dominates the $K\pi$ S-wave
- The broad structure around 1.95 GeV/ c^2 indicates $K_0^*(1950)$ resonance
- A new $a_0(1950)$ resonance is needed to fit the data in both modes:
 - $m(a_0(1950)) = 1931 \pm 14 \pm 22 \text{ MeV/c2}$
 - $\Gamma(a_0(1950)) = 271 \pm 22 \pm 29 \text{ MeV}$
 - Statistical significance of 2.5σ and 4.0σ , including systematics •
 - MIPWA results, below, with new $a_0(1950)$ resonance included

			4	
	$\eta_c { ightarrow} K$	$G_S^0 K^{\pm} \pi^{\mp}$	$\eta_c \rightarrow F$	$K^{+}K^{-}\pi^{0}$
Amplitude	Fraction $(\%)$	Phase	Fraction (%)	Phase
$(K\pi \ S$ -wave) K	$107.3 \pm 2.6 \pm 17.9$	0.	$125.5 \pm 2.4 \pm 4.2$	0.
$a_0(980)\pi$	$0.83 \pm 0.46 \pm 0.80$	$1.08 \pm 0.18 \pm 0.18$	$0.00 \pm 0.03 \pm 1.7$	
$a_0(1450)\pi$	$0.7 \pm 0.2 \pm 1.4$	$2.63 \pm 0.13 \pm 0.17$	$1.2\pm0.4\pm0.7$	$2.90\pm0.12\pm0.25$
$a_0(1950)\pi$	$3.1 \pm 0.4 \pm 1.2$	$-1.04 \pm 0.08 \pm 0.77$	$4.4 \pm 0.8 \pm 0.7$	$-1.45 \pm 0.08 \pm 0.27$
$a_2(1320)\pi$	$0.15\pm0.06\pm0.08$	$1.85 \pm 0.20 \pm 0.23$	$0.61\pm0.23\pm0.3$	$1.75 \pm 0.23 \pm 0.42$
$K_{2}^{*}(1430)^{0}K$	$4.7 \pm 0.9 \pm 1.4$	$4.92 \pm 0.05 \pm 0.1$	$3.0 \pm 0.8 \pm 4.4$	$5.07 \pm 0.09 \pm 0.3$
Total	116.8 ± 2.8		134.8 ± 2.7	
$-2\log \mathcal{L}$	-4314.2		-2339	
χ_2/N_{cells}	301/254 = 1.17		283.2/233 = 1.22	



Not yet on arXiv

New $a_0(1950)$ resonance

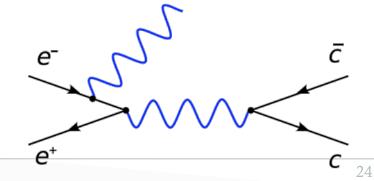
- $K\overline{K}$ mass projections with MIPWA fit projections, below
- Fit quality is improved with (red) extra $a_0(1950) \rightarrow \overline{KK}$ resonance

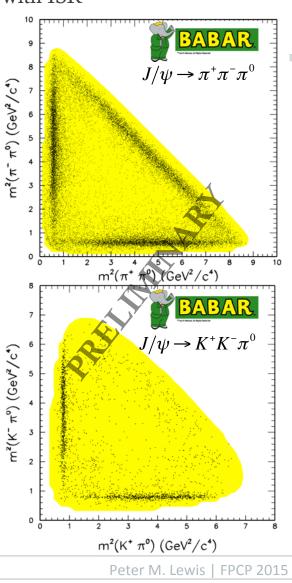
[Preliminary] Dalitz plot analysis of $J/\psi \rightarrow \pi^+\pi^-\pi^0$ and $J/\psi \rightarrow K^+K^-\pi^0$ produced via e^+e^- annihilation with ISR

Not yet on arXiv

ISR production of charmonium in e^+e^- annihilations (γ_{ISR} not reconstructed):

 $J/\psi \rightarrow \pi^+\pi^-\pi^0$


$$J/\psi \to K^+ K^- \pi^0$$


- 519 fb⁻¹ at and near Y(2,3,4S) resonances
- Measure branching fraction ratio:

$$\mathcal{R} = \frac{\mathcal{B}(J/\psi \to K^+ K^- \pi^0)}{\mathcal{B}(J/\psi \to \pi^+ \pi^- \pi^0)}$$

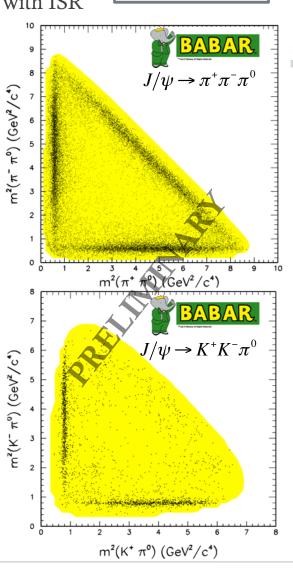
• Dalitz plots:

- $J/\psi \rightarrow \pi^+\pi^-\pi^0$ (right top) is dominated by $\rho(770)\pi$ amplitudes
- $J/\psi \rightarrow K^+K^-\pi^0$ (bottom) dominated by $K^*(892)K$ amplitude, with $\rho(1450)\pi^0$ contributions on diagonal

[Preliminary] Dalitz plot analysis of $J/\psi \rightarrow \pi^+\pi^-\pi^0$ and $J/\psi \rightarrow K^+K^-\pi^0$ produced via e^+e^- annihilation with ISR

Not yet on arXiv

Results:


- $\mathcal{R} = 0.0929 \pm 0.002 \pm 0.002$
- $\rho(1450)$ visible in both channels, with $\mathcal{R}(\rho(1450)) = \mathcal{B}(\rho(1450) \rightarrow K^{+}K^{-})/\mathcal{B}(\rho(1450) \rightarrow \pi^{+}\pi^{-}) = 0.190 \pm 0.042 \pm 0.049$
- Measured fractions for resonances contributing to the decays below:

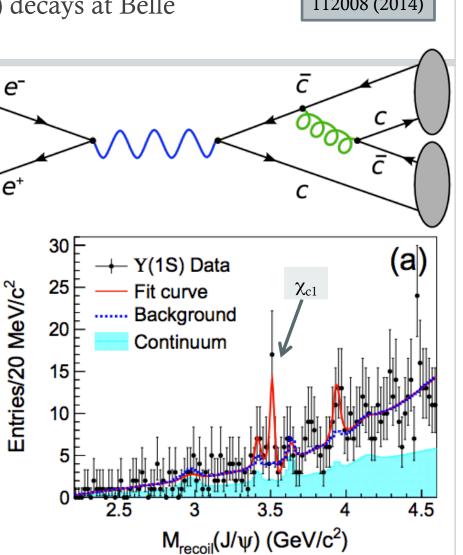
 $J/\psi \rightarrow \pi^+\pi^-\pi^0$:

	Final state	Isobar	fraction	%	Phase (radians)	Veneziano fraction $\%$
	$\rho(770)\pi$	119.0 \pm	$1.1 \pm$	3.3	0.	120.0 ± 1.9
\longrightarrow	$\rho(1460)\pi$	$16.9~\pm$	$2.0~\pm$	3.1	$3.92\pm0.05\pm0.11$	1.53 ± 0.13
	$\rho(1700)\pi$	$0.1~\pm$	$0.1~\pm$	0.2	$1.01 \pm 0.35 \pm 0.79$	0.84 ± 0.08
	$\rho(2150)\pi$	$0.04~\pm$	$0.05~\pm$	0.02	$1.89 \pm 0.30 \pm 0.48$	2.03 ± 0.17
	$ ho_{3}(1690)\pi$					0.09 ± 0.02
	Sum	136.0 \pm	$2.3~\pm$	4.3		124.5 ± 2.3
	χ^2/ u		764/552			780/554

 $J/\psi \rightarrow K^+ K^- \pi^0$:

	Final state	fraction %	\mathbf{phase}
	$K^{*}(892)K$	$87.8 \pm 2.0 \pm 1.7$	0.
\rightarrow	$ ho(1450)^0\pi^0$	$11.5 \pm 2.1 \pm 2.1$	$-2.81 \pm 0.25 \pm 0.36$
	$K^{*}(1410)K$	$1.7\pm0.7\pm1.1$	$2.89 \pm 0.35 \pm 0.08$
	$K_{2}^{*}(1430)K$	$3.8\pm1.4\pm0.5$	$-2.42 \pm 0.22 \pm 0.07$
	$ ho(1700)^0\pi^0$	$0.9\pm1.0\pm0.6$	$1.06\pm0.20\pm0.7$
	Total	$105.6 \pm 3.4 \pm 3.0$	
	$\chi^2/ u = 94/92$		

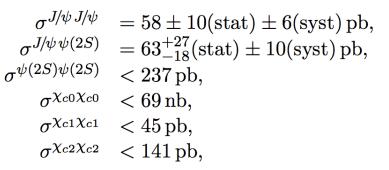
Double charmonium production

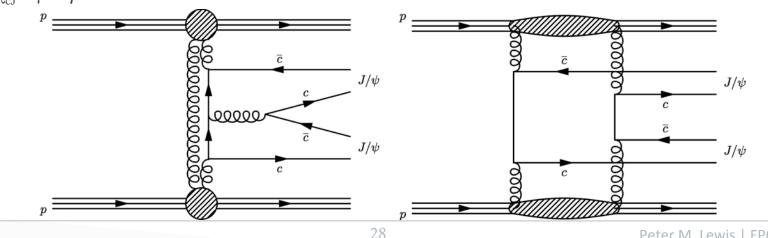


Exclusive double-charmonium production in Y(1S) and Y(2S) decays at Belle

PRD 90 112008 (2014)

- Double-charmonium production in *e*⁺*e*⁻ annihilation exceeds leading-order NRQCD by an order of magnitude
- What about in bottomonium decay?
- Use Belle's Y(1,2S) datasets (102x10⁶, 158x10⁶), look for:
 - $Y(1,2S) \rightarrow J/\psi(\psi(2S)) + X$
 - $X = \eta_{c} \chi_{cJ} \eta_{c}(2S), X(3940), X(4160)$
- Look at spectrum of mass recoiling against J/ψ $(\rightarrow \mu^+\mu^-)$ or ψ (2S) $(\rightarrow \mu^+\mu^-$ or $\rightarrow \pi^+\pi^- J/\psi$)
- Results:
 - Evidence for Y(1S) $\rightarrow J/\psi \chi_{c1}$
 - $\mathcal{B}(Y(1S) \rightarrow J/\psi \chi_{c1}) = (3.90 \pm 1.21 (\text{stat.}) \pm 0.23 (\text{syst.})) \times 10^{-6}$
 - Significance of 4.60
 - All other signals <3σ
 - All results consistent with NRQCD factorization approach


Central exclusive production of double charmonium at LHCb


arXiv:1407.5973 J. Phys. G 41 (2014) 115002.

- A search for central exclusive production of charmonia: $pp \rightarrow pXp$, where $X=J/\psi J/\psi$, J/ψ ψ (2S), ψ (2S), $\chi_{c0}\chi_{c0}$, $\chi_{c1}\chi_{c1}$, $\chi_{c2}\chi_{c2}$
- CEP production principally from **double** pomeron exchange (below)
- Sensitive to presence of additional particles (glueballs, tetraquarks, etc.)
- Exclusive reconstruction, $4\mu + (0,1,2)\gamma$:
 - J/ψ and $\psi(2S) \rightarrow \mu^+\mu^-$
 - $\chi_{cI} \rightarrow \gamma J/\psi$

Results:

First observation of central exclusive production of pairs of charmonia

Peter M. Lewis | FPCP 2015

Outlook

It's still the "golden age" of heavy quarkonium physics

- BaBar's Y(2,3S) and Belle's Y(1,2,3,5S) datasets remain fruitful
- **BESIII** continues to be very active in quarkonium and especially exotics

The golden age will continue in the near future:

- Belle II will generate huge luminosity that will benefit quarkonium physics
 - At Y(4S):
 - ISR production
 - $B \rightarrow$ charmonium+X decays
 - Radiative decays with π -tagging: $\chi_b(3P)$, Y(2D)...
 - Y(1,2,3,5S) (please?):
 - Just 1 week at each would yield ~order of magnitude increased datasets
 - Y(1D) J=0,2 states, "Y(5S)" transitions, spin-flip transitions, etc. etc.
- Major upgrades at the LHC experiments for Run 2 and beyond

