B decays with lattice QCD: status and prospects

Aida X. El-Khadra (University of Illinois)

Mini workshop on $D^{(*)}\tau v$ and related decays KMI, 27-28 March 2017

NAGOYA UNIVERSITY

Outline

- Motivation and Introduction
- Iattice QCD
- $B \to D^* \text{ at zero recoil}$
- $B \to D \text{ at all recoil}$
 - combined exp-lattice fit
- \bigcirc $|V_{cb}|$ determinations
- Summary and Outlook

Introduction

example:
$$B^0 \to D^- \mu^+ \nu_\mu$$

Experiment vs. SM theory:

(experiment) = (known) x (**CKM factor**) x (had. matrix element)

$$\frac{d\Gamma(B \to \pi \ell \nu)}{dq^2}, \frac{d\Gamma(B \to K \ell^+ \ell^-)}{dq^2}, \dots$$
$$\frac{d\Gamma(B \to D \ell \nu)}{d\omega}, \frac{d\Gamma(B \to D \tau \nu)}{d\omega}, \dots$$
$$\Delta m_{d(s)}$$

Lattice QCD

parameterize the MEs in terms of form factors, decay constants, bag parameters, ...

A. El-Khadra

Introduction

\bigcirc For $|V_{cb}|$ determinations use

$$\bullet B_{(s)} \to D_{(s)} \,\ell\nu, \ (\ell = e, \mu)$$

•
$$B_{(s)} \to D^*_{(s)} \,\ell\nu, \ (\ell = e, \mu)$$

For tests of lepton flavor universality use

•
$$B_{(s)} \to D_{(s)} \tau \nu_{\tau} / B_{(s)} \to D_{(s)} \ell \nu_{\ell}$$

•
$$B_{(s)} \to D^*_{(s)} \tau \nu_{\tau} / B_{(s)} \to D^*_{(s)} \ell \nu_{\ell}$$

We need form factors at nonzero recoil for both.

Introduction

$$B_{(s)} \to D_{(s)} \,\ell\nu$$

$$\frac{\langle D|V^{\mu}|B\rangle}{\sqrt{M_B M_B}} = h_+(\omega)(v_B + v_D)^{\mu} + h_-(\omega)(v_B - v_D)^{\mu}$$
$$\mathcal{G}(\omega) = h_+(\omega) + \frac{M_B - M_D}{M_B + M_D}h_-(\omega) \sim f_+(q^2)$$

$$B_{(s)} \to D^*_{(s)} \,\ell \nu$$

$$\frac{\langle D^*(p_{D^*}, \epsilon^{(\alpha)}) | A^{\mu} | B(p_B) \rangle}{\sqrt{M_B M_{D^*}}} = \frac{i}{2} \epsilon_{\nu}^{(\alpha)*} \left[g^{\mu\nu} (1+\omega) h_{A_1}(\omega) - v_B^{\nu} \left(v_B^{\mu} h_{A_2}(\omega) + v_{D^*}^{\mu} h_{A_3}(\omega) \right) \right]$$

$$\frac{\langle D^*(p_{D^*}, \epsilon^{(\alpha)}) | V^{\mu} | B(p_B) \rangle}{\sqrt{M_B M_{D^*}}} = \frac{1}{2} \epsilon^{\mu\nu}{}_{\rho\sigma} \epsilon^{(\alpha)*}_{\nu} v^{\rho}_B v^{\sigma}_{D^*} h_V(\omega)$$

A. El-Khadra

Lattice **QCD** Introduction

$$\mathcal{L}_{\text{QCD}} = \sum_{f} \bar{\psi}_{f} (\not\!\!\!D + m_{f}) \psi_{f} + \frac{1}{4} \text{tr} F_{\mu\nu} F^{\mu\nu}$$

- discrete Euclidean space-time (spacing a) derivatives \rightarrow difference operators, etc...
- ✦ finite spatial volume (L)
- \bullet finite time extent (T)

adjustable parameters

- ✤ lattice spacing:
- finite volume, time:
- quark masses (m_f) :

tune using hadron masses extrapolations/interpolations

$$M_{H,\text{lat}} = M_{H,\text{exp}}$$
$$m_f \rightarrow m_{f,\text{phys}}$$

 $a \rightarrow 0$

 M_{ud}

 \mathcal{M}_{S}

$$m_c m_b$$

* also: n_f = number of sea quarks: 3 (2+1), 4 (2+1+1)

A. El-Khadra

systematic error analysis

...of lattice spacing, chiral, heavy quark, and finite volume effects is based on EFT (Effective Field Theory) descriptions of QCD

→ ab initio

The **EFT** description:

provides functional form for extrapolation (or interpolation)

Second be used to build improved lattice actions/methods

Solution for the size of systematic effects of systematic effects of the size of the

To control and reliably estimate the systematic errors

Image repeat the calculation on several lattice spacings, light quark masses, spatial volumes, ...

a (fm)

A. El-Khadra

Lattice guide

 \bigcirc Need to have several (≥2) lattice spacings.

Comparing lattice results with different actions provides good cross checks of methods used.

- If larger than in Nature, there must be a range of light quark masses, where the pions shouldn't be too heavy at low end of the range.
- 𝔤 box size should have *m*_π*L* ≥4.
- Sea quark flavors: 2+1, 2+1+1, 1+1+1+1
- Secomplete systematic error analysis and budget
- FLAG: compare/combine results from different lattice groups for specific quantities.

form factor for $B \to D^{(*)} \ell \nu \& V_{cb}$

$$\frac{d\Gamma(B \to D^* \ell \nu)}{d\omega} = (\text{known}) \times |V_{cb}|^2 \times (\omega^2 - 1)^{1/2} |\mathcal{F}(\omega)|^2$$

Using CLN to extrapolate to $\omega=1$ (HFAG 2016):

 $B \to D^* \ell \nu : \eta_{\rm EW} | V_{cb} | \mathcal{F}(1) = (35.61 \pm 0.11 \pm 0.41) \times 10^{-3}$

♦ FNAL/MILC 2014 (J. Bailey et al, arXiv:1403.0635, 2014 PRD): $\mathcal{F}(1) = 0.906(4)(12)$

new: HPQCD (J. Harrison @ Lattice 2016, preliminary)

♦ FNAL/MILC 2014 (J. Bailey et al, arXiv:1403.0635, 2014 PRD):

- 15 MILC asqtad ensembles
 5 lattice spacings
 - ~ 4 sea quark masses per lattice spacing
 - ~ 600 2000 configurations

× 4 time-sources per ensemble

- asqtad light valence quarks
- Fermilab *b* quarks
- O(a) improved current
- mostly nonperturbative renormalization (mNPR)

♦ FNAL/MILC 2014 (J. Bailey et al, arXiv:1403.0635, 2016 PRD):

♦ FNAL/MILC 2014 (J. Bailey et al, arXiv:1403.0635, 2014 PRD):

★ combined chiral-continuum extrapolation
★ cusp due to $D^* → D\pi$ and $m_{D^*} - m_D ~ m_{\pi}$ ★ included using ChPT with $D^*D\pi$ coupling as input.

♦ HPQCD (J. Harrison @ Lattice 2016, preliminary):

- 8 MILC HISQ ensembles 3 lattice spacings
 - ~ 3 sea quark masses per lattice spacing including one each at physical mass
- HISQ light valence quarks
- NRQCD *b* quarks
- O(a) improved current
- 1-loop perturbative renormalization is the dominant source of error
- systematic error analysis in progress

♦ HPQCD (J. Harrison @ Lattice 2016, preliminary):

- 8 MILC HISQ ensembles 3 lattice spacings
 - ~ 3 sea quark masses per lattice spacing including one each at physical mass
- HISQ light valence quarks
- NRQCD *b* quarks
- O(a) improved current
- 1-loop perturbative renormalization is the dominant source of error
- systematic error analysis in progress

Form factors for
$$B \to D \,\ell \nu$$
, $(\ell = e, \mu, \tau)$

- \star calculate the form factors in the low recoil energy (high q^2) range.
- * use z-expansion for model-independent parameterization of q^2 dependence.
- ★ calculate the complete set of form factors, $f_+(q^2)$, $f_0(q^2)$.
- ***** for $f_+(q^2)$ compare shape between experiment and lattice.

Form factors for $B \to D \,\ell \nu$, $(\ell = e, \mu, \tau)$

FNAL/MILC (arXiv:1503.07237, PRD 2015)

- 14 MILC asqtad ensembles
 4 lattice spacings
 - ~ 4 sea quark masses per lattice spacing
 - ~ 600 2000 configurations

× 4 time-sources per ensemble

- asqtad light valence quarks
- Fermilab *b* quarks
- O(a) improved current
- mostly nonperturbative renormalization (mNPR)

Form factors for $B \to D \,\ell \nu$, $(\ell = e, \mu, \tau)$

FNAL/MILC (arXiv:1503.07237, PRD 2015)

Form factors for $B \to D \,\ell \nu$, $(\ell = e, \mu, \tau)$

 \checkmark LQCD form factors can be used to calculate the CKM free ratio:

$$R(D) \equiv \frac{\mathcal{B}(B \to D\tau\nu_{\tau})}{\mathcal{B}(B \to D\ell\nu)}$$

combine LQCD form factors with experiment, using the BGL (Boyd, Grinstein, Lebed, hep-ph/9508211, 1996 NPB) parameterization:

☆ FLAG-3 (S. Aoki et al, arXiv:1607.00299, EPJC 2017) performs a similar combined fit using the BCL parameterization.

A. El-Khadra

Implications for $|V_{cb}|$

Implications for $|V_{cb}|$

BSM phenomenology: LFU τ/ℓ

 $R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu_{\tau})}{\mathcal{B}(B \to D^{(*)}\ell\nu)}$

HFAG average for EPS 2015

BSM phenomenology: LFU τ/ℓ

- The shape of the $B \rightarrow D^{(*)} \tau \nu$ rate is sensitive to f_0 contribution.
- Shape comparison: use (ratios of) differential or binned decay rates to compare theory and experiment.

BSM phenomenology: LFU τ/ℓ

Prospects for $B_{(s)} \rightarrow D_{(s)}$ form factors at all recoil

ongoing/planned LQCD calculations:

RBC/UKQCD:

 $B \rightarrow D$ and $B_s \rightarrow D_s$ form factors

RHQ action for *b* quark, DWF charm on DWF (2+1) ensembles preliminary results presented at Lattice 2016 (Witzel)

Y HPQCD:

 $B_s \rightarrow D_s$ form factors

NRQCD *b* quarks, HISQ charm on MILC asqtad (2+1) ensembles preliminary results presented at Lattice 2016 (Monahan)

☆ FNAL/MILC:

 $B \rightarrow D$ and $B_s \rightarrow D_s$ form factors

Fermilab b,c quarks on MILC HISQ (2+1+1) ensembles (full set)

☆ LANL/SNU:

 $B \rightarrow D$ form factors

Oktay-Kronfeld *b,c* quarks on MILC HISQ (2+1+1) ensembles First tests of discretization errors with OK action at Lattice 2016

Prospects for $B_{(s)} \to D^*_{(s)}$ form factors at all recoil

ongoing/planned LQCD calculations:

☆ HPQCD:

NRQCD *b* quarks, HISQ charm on MILC HISQ (2+1+1) ensembles

☆ FNAL/MILC:

Fermilab *b,c* quarks on MILC asqtad (2+1) ensembles (full set)
 Fermilab *b,c* quarks on MILC HISQ (2+1+1) ensembles (full set)

☆ LANL/SNU:

Oktay-Kronfeld b,c quarks on MILC HISQ (2+1+1) ensembles

☆ RBC/UKQCD:

RHQ action for *b* quark, DWF charm on DWF (2+1) ensembles

Combine binned experimental decay distributions (Belle, arXiv: 1702.01521) with LQCD form factors to extract $|V_{cb}|$ and obtain improved form factors to be used for SM predictions of $R(D^{(*)})$.

Electroweak corrections, $\eta_{\rm EW}$

- * It includes a log from *W*/*Z*/ γ boxes (Sirlin, 1982): $\eta_{\rm EW} = 1 + \frac{\alpha}{\pi} \ln \frac{m_Z}{\mu}$
- * In B^0 decay, there is a long-distance (universal) radiative correction due to Coulomb attraction between the final states: $\pi \alpha/2$
- Structure-dependent radiative corrections have not yet been calculated.

Leptonic *B*-meson decay

$$\Gamma(B^+ \to \tau^+ \nu_\tau) = (\text{known}) \times |V_{ub}|^2 f_B^2$$

Search for new physics.
Search for new physics.

 \bigcirc SU(3) ratio f_{B_s}/f_{B_d} : statistical and systematic errors tend to cancel.

 \bigcirc Decay constants are also needed for rare leptonic decay, *B*_{s(d)} → µµ.

B decay constant summary

B-meson summary

Summary

- ☆ LQCD results exist for $B \rightarrow D$ form factors at all recoil and $B \rightarrow D^*$ form factor at zero recoil with errors that are commensurate with experimental uncertainties.
- ★ Expect to see new LQCD results for $B_{(s)} \rightarrow D_{(s)}$ and $B_{(s)} \rightarrow D_{(s)}^*$ form factors at all recoil at Lattice 2017.

> may affect the tension between exclusive and inclusive determinations of $|V_{cb}|$.

- > will enable an improved SM estimate of $R(D^*)$.
- \Rightarrow For *B* decays to $D^{(*)}\tau\nu$ final states, shape comparison between theory and experiment would be useful.
- \Rightarrow LQCD (or combined lattice +exp) form factors can also be used to obtain the predictions for $R(D^{(*)})$ and other observables from BSM theories.
- \Rightarrow expect LQCD results for *B*-meson decay constants at 1% level soon.

Amala Willenbrock

Outlook

Further improvements

☆ Gauge field ensembles with light sea quarks at their physical masses are being used in a growing number of LQCD calculations.

ጵ will need to include

- ◆ structure-dependent QED effects
- > program being developed for kaon quantities, muon g-2

☆ Include effects of $D^* \to D\pi$ directly in the LQCD calculation. Theoretical framework for semileptonic *B* decays to vector meson final states under development (Briceño et al, arXiv:1406.5965, 2015 PRD; Agadjanov et al, arXiv:1605.03386). > LQCD pilot studies are underway for $B_s \to K^* \ell \nu$, $B \to K^* \ell \ell$,...

Thank you!

Farah Willenbrock

ありがとうございます

Backup slides

 $\langle \mathcal{O} \rangle \sim \int \mathcal{D}\psi \mathcal{D}\bar{\psi} \mathcal{D}A \,\mathcal{O}(\psi,\bar{\psi},A) \,e^{-S} \qquad \qquad S = \int d^4x \left[\bar{\psi}(\not\!\!\!D+m)\psi + \frac{1}{4} (F^a_{\mu\nu})^2 \right]$

use monte carlo methods (importance sampling) to evaluate the integral.

Note: Integrating over the fermion fields leaves det(D + m) in the integrand. The correlation functions, O, are then written in terms of $(D + m)^{-1}$ and gluon fields.

steps of a lattice QCD calculation:

- 1. generate gluon field configurations according to $det(D+m) e^{-S}$
- 2. calculate quark propagators, $(D + m_q)^{-1}$, for each valence quark flavor and source point
- **3.** tie together quark propagators into hadronic correlation functions (usually 2 or 3-pt functions)
- 4. statistical analysis to extract hadron masses, energies, hadronic matrix elements, from correlation functions
- 5. systematic error analysis

Heavy Quark Treatment

- For light quarks ($m_\ell < \Lambda_{
 m QCD}$), leading discretization errors ~ $lpha_s^k (a \Lambda_{
 m QCD})^n$
- For heavy quarks, leading discretization errors ~ $\alpha_s^k (am_h)^n$ with currently available lattice spacings
 - for *b* quarks $am_b > 1$

for charm $am_c \sim 0.15$ -0.6

- need effective field theory methods for b quarks for charm can use light quark methods, if action is sufficiently improved
- avoid errors of $(am_b)^n$ in the action by using EFT:
 - relativistic HQ actions (Fermilab, Columbia [aka RHQ], Tsukuba)
 - + HQET
 - + NRQCD

or

- use improved light quark actions for charm (HISQ, tmWilson, NP imp. Wilson,...) and for b:
 - + use same LQ action as for charm but keep $am_h < 1$,
 - use HQET and/or static limit to extrapolate/interpolate to b quark mass

chiral-continuum extrapolation

Some ensembles still have $m_{\text{light}} > 1/2 (m_u + m_d)_{\text{phys}}$

 χ PT guides the extrapolation/interpolation to the physical point.

- Θ include (light quark) discretization effects (for example, staggered χ PT)
- Second also add HQ discretization terms to chiral-continuum fits
- Combined chiral-continuum extrapolation/interpolation
- **Solution General Science Set of a set of a**

chiral-continuum extrapolation

Example: Set of ensembles by MILC collaboration

Five collaborations have now generated sets of ensembles that include sea quarks with physical light-quark masses: PACS-CS, BMW, MILC, RBC/UKQCD, ETM

finite volume effects

One stable hadron (meson) in initial/final state:

```
If L is large enough, FV error \sim e^{-m_{\pi}L}
```

 Θ keep $m_{\pi} L \gtrsim 4$

To quantify residual error: \bigcirc include FV effects in χ PT \bigcirc compare results at several *L*s (with other parameters fixed)

The story changes completely with two or more hadrons in initial/final state! (or if there are two or more intermediate state hadrons)

The *z*-expansion

The form factor can be expanded as:

$$f(t) = \frac{1}{P(t)\phi(t,t_0)} \sum_{k=0}^{\infty} a_k(t_0) z(t,t_0)^k$$

Bourrely at al (Nucl.Phys. B189 (1981) 157) Boyd, Grinstein, Lebed (hep-ph/9412324, PRL 95; hep-ph/9504235, PLB 95; hep-ph/ 9508211, NPB 96; hep-ph/9705252, PRD 97) Lellouch (arXiv:hep- ph/9509358, NPB 96) Boyd & Savage (hep-ph/9702300, PRD 97) Bourrely at al (arXiv:0807.2722, PRD 09)

- P(t) removes poles in $[t_{-},t_{+}]$
- The choice of outer function ϕ affects the unitarity bound on the a_k .
- In practice, only first few terms in expansion are needed.

Exclusive vs. inclusive $|V_{cb}|$ and $|V_{ub}|$

form factors for $B \to \pi \,\ell \,\nu \,\& \, V_{ub}$

☆ FNAL/MILC & RBC form factors are in good agreement

☆ HPQCD (arXiv:1510.07446, PRD 2016): f₀ with physical light quarks at zero recoil satisfies soft-pion theorem

★ Note: two independent LQCD **predictions** for $B_s \rightarrow K \ell \nu$ form factors (HPQCD, arXiv:1406.2279, PRD 2014; RBC, arXiv:1501.05373, PRD 2015)

+ ongoing work by ALPHA (Banerjee, Koren @ Lattice 2016), FNAL/MILC, ...

form factors for $B \to \pi \,\ell \,\nu \,\& \, V_{ub}$

☆ shape of *f*₊ agrees with experiment and uncertainties are commensurate
 ☆ fit lattice form factors together with experimental data to determine |*V*_{ub}| and obtain form factors (*f*₊,*f*₀) with improved precision...

form factors for $B \to \pi \,\ell \,\nu \,\& \, V_{ub}$

☆ shape of f_+ agrees with experiment and uncertainties are commensurate
☆ fit lattice form factors together with experimental data to determine $|V_{ub}|$ and obtain form factors (f_+, f_0) with improved precision...

form factors for $B \to K \, \ell \ell$

HPQCD (arXiv:1306.0434, 1306.2384, PRL 2013)

FNAL/MILC (arXiv:1509.06235, PRD 2016)

 \Rightarrow Two LQCD calculations (on overlapping ensemble sets, different valence actions): HPQCD (NRQCD *b* + HISQ), FNAL/MILC (Fermilab *b* + asqtad)

- ☆ consistent results for all three form factors
- * also consistent with LCSR (Khodjamarian et al, arXiv:1006.4945, JHEP 2010)
- ★ Note: First LQCD calculation of $\Lambda_b \to \Lambda \ell^+ \ell^-$ form factors (10 total) (see Meinel talk)

form factors for $B \to \pi \, \ell \ell$

First LQCD calculation of f_T by FNAL/MILC

★ Take f_{+,f_0} from combined fit of lattice form factors + experimental data for $d\mathcal{B}(B \rightarrow \pi \ell \nu)/dq^2$

BSM phenomenology: LFU μ/e

Lepton universality test: $B \to K \mu^+ \mu^- / B \to K e^+ e^-$

~2.6 $\sigma\,$ tension between LHCb measurement and SM theory

~2.6 σ tension between LHCb measurement and SM theory

In the SM these ratios are insensitive to the form factors (see also C. Bouchard et al, arXiv:1303.0434, PRL 2013)

A. El-Khadra