ビームモニター入門 SuperKEKB主リングモニターの紹介

三塚 岳 (KEK 加速器研究施設)

Flavor Physics workshop 2021 (FPWS2021) 27-30 September 2021

はじめに

- KEK 加速器研究施設の三塚 岳(みつか がく)と申します。
- SuperKEKB加速器で主にビーム位置モニター(GTBT)と
 ビームサイズモニター(XRM, SRM)を担当しています。
- 加速器施設に着任するまで物理の研究を行っていました。
 大学院:スーパーカミオカンデで大気ニュートリノ
 - PD:LHCやBNL-RHICで前方QCDやスピン
- 物理屋の気持ちが分かるのでは?とかれこれ15年近い 付き合いになる松岡さんから講義の依頼がありました。
- BCGを取るであろう方を想定し、SuperKEKB主リングの ビームモニターの種類・特徴・性能を広く浅く紹介します。

The SuperKEKB e⁺e⁻ collider

Belle II detector

Electron-Positron linear accelerator

collision point

Positron ring

Electron ring

Positron damping ring

- Major upgrade to the KEKB e⁺e⁻ collider providing tons of B, τ, etc. to Belle II
- Main rings
 - 7 GeV e⁻ storage ring (HER)
 - 4 GeV e⁺ storage ring (LER)
- Injector complex
 - Electron/positron linac
 - 1.1 GeV positron damping ring (DR)
- "Nano-beam" collision scheme
- Design parameters
 - Target Luminosity: $8 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}$ (= KEKB x 40)
 - Beam Currents: 3.6 A (LER) and 2.6 A (HER)
 - Horizontal crossing Angle: 41.5+41.5 mrad
 - β_y* ~ 0.3 mm
 - $\sigma_x^* \sim 10 \ \mu m$, $\sigma_y^* \sim 50 \ nm$, $\sigma_z \sim 6 \ mm$

主なビームモニター

システム(主な略称・別称)	設置数		
	HER	LER	DR
ビーム位置モニター(BPM)	466	444	83
変位計	110	108	0
横方向フィードバック(単にFBと言われる場合も)	2	2	1
進行方向フィードバック(進行方向FB)	0	1	0
IP軌道フィードバック(Fast orbit FB)			
可視光ビームサイズモニター (SRM)	1	1	1
X線ビームサイズモニター (XRM)	1	1	0
ベータトロンチューンモニター	2	2	1
ビームロスモニター(ロスモニター)	207 34		34
DCCT	1	1	1
CT	1	1	0
バンチカレントモニター	1	1	1
バンチ振動モニター(BOR)	1	1	0

素粒子実験と加速器の主な違い

加速器で使うモニターは

- 数量:たいてい数個-数十個、せいぜい千個
- 大きさ:あまり気にしない
- 回路の発熱・消費電力:(実験に比べて)あまり気にしない
- HVやゲインの管理:厳密な物からそうでない物まで
- 開発とメンテナンス:KEK職員
- 安定性:壊れないことが重要

ビーム電流和の測定

- DCCT: 全バンチに対する電流総和を測定、PV更新は1 Hz
- 正確さが何よりも重要。
- 書き方:I_{HER}、I_{LER}

バンチ毎電流の測定

- バンチ電流モニター(BCR): バンチ毎に電流測定、PV更新は1 Hz
- 書き方:I_{bunch}、I_b

Current Transformer (CT)

いる電流i_bに比例した出力になる。

DC Current Transformer (DCCT)

● ビームのDC成分を検出

• CERNのUnserによりParametric CTとして実用化。

SuperKEKBのDCCT

- 2つのコアの特性がぴったり合っていないと、0電流でも リップルが出る。
 - 大量にコアを製造して、特性のあったものを見つける→大変
 - コアの特性が少々ずれていても大丈夫な回路に変更する

Bunch current monitor (BCM)

Spartan6 FGPA VME 2W size

- 絶対値はDCCTを使って校正する必要がある。
- 最適な入射バケツ選択が可能 → 均等なフィルパターン
- アボート直前の40 msの情報を記録できる。
- バンチ振動レコーダー(BOR)も同型モジュールを使用。

BCMの 測定 結果

Eile Edit Command Window 2021-06-15 09:10:59 Help 👻 HER Bunch Current Monitor 978 bunches Max. 0.63 mA Ave. 0.60 mA Sig. 0.02 mA 0.6 0.4 0.2 Π Π 0.6 0.4 0.2 $0.6\frac{1}{2}$ 0.4 0.2 0.6 0.4 0.2 0.6 0.4 0.2 Π 0.6 0.4 0.2 **1** | | 3200 0.6 0.4 0.2 0.6- パイロットバンチ 0.4 0.2 HER_BCM on skbcons-01.kekb.kek.jp:0.0

ビーム位置を測る

• ビームの平均(重心)位置の測定

- 狭帯域検波器:全バンチの長時間平均位置、更新は0.25 Hz
- 位置決定精度は3 µm。
- 単にビーム位置モニター(BPM)と言ったらこちらを指す。

• ビームの瞬間位置の測定

- ターンバイターンモニター(TBT):あるバンチのある瞬間の位置
- 位置決定精度は50-100 µm。
- 常時測定は行っていない。
- 入射直後の振動の様な動的な振る舞いを見たり、水平垂直結合のスタディ等で使用。

ベータトロン振動 ____ ターンバイターンモニターで見る

Closed Orbit Distortion (COD) 狭帯域検波器で見る

ビーム位置モニター (BPM)

← SuperKEKBのLER はアンテチェンバー型

- 検出電極とビームとの距離がr なら、電極に誘起される電荷は 1/rに比例する(Poisson方程式)。
- 2つの電極をビームを挟んで対 向させると、2つの電極から出て くる電圧の差はビームのチェン バー中心からの変位におおよそ 比例する。

• 電極の種類

- ストリップライン型(主にLinac, BT) Pros: 検出周波数帯域が広い、ボタン電極に比べて大信号 Cons: リングで使うと非常に高出力、 ビームダクトとの間に電磁場がト ラップされる → インピーダンスが高く、リングで 使うとビーム不安定や発熱を招く
- ボタン型(主にリング)

SuperKEKB LER

Ф64 mmチェンバーのカットオフ周波数 = 2.7 GHz

QC1L側BPM取り付け風景

ビーム位置モニター用検波回路

Туре	Function	Resolution	Repetition	Number of units
1GHz狭帯域検波器 (KEKBより継続)	閉軌道補正	3 µm	0.25 Hz	109
509MHz 狭帯域検波器	光学測定·補正	2−3 µm	0.25 Hz	133
ゲート付きターン バイターンモニター	入射調整 光学測定(XY結合等)	50–100 µm	100 kHz∕data	117
Medium-band (Libera Brilliance+)	Measurement of orbit variation	< 2 to 3 µm	10 kHz	4
Fast orbit deviation (Libera Brilliance+)	Orbit deviation abort	~10 µm <10 turn	100 kHz	4

RF周波数の整数倍のみ狭帯域(Δf = 50 Hz)で検波 スーパーヘテロダインで周波数変換 f_{IF} = f_{sig} - f_{LO}

横方向位置の目標軌道からの残差

File Edit Steering Orbit Control Window

2021-06-01 16:53:08 <u>H</u>elp →

ターンバイターンモニター回路 (TBT)

- 両リングで合計約140台のターン バイターンモニターが設置されて いる。
 - ゲート付きなのでGated TBT(GTBT)と言ったり、単純に TBTと言ったり。
 - DRのBPMはゲート無しTBT。
- 主リング入射部と衝突点近くには 特に重点的に配置。
- ゲートをパイロットバンチに合わせ 衝突運転中でも光学測定を行え る、というのが最初の目的だった がまだ実現していない。

508.886M Hz & FID

入射バンチ位置のターン毎の変化

Eile Edit Window

2021-07-01 17:18:39 Help -

Save to : HER 2021 07 01 17 18 15.data

休憩:加速器に興味がある学生・PDの方へ

- 興味があれば是非見学を申し込んでみて下さい。
- 加速器で研究・開発をやってみたい方はもちろん大歓迎です。
- 物理実験で培った知識・技術・経験が役立ちます。
 - 検出器開発
 - DAQ開発
 - ソフトウェア開発
 - データ解析・理論計算
 - などなど
- 必要な事は入ってからでも学べます。

ビーム不安定

- 加速器真空要素(チェンバー、空洞、つなぎ等)に
 ビームからの高周波信号が発生する。
- 次々来るバンチからの信号が、この高周波信号
 を大きくするように働く(共振)と、信号はどんどん
 大きくなり、またビームを揺らし始める。
- ビームが振動し始めると、さらにエネルギーがた まっていき、ますます激しくビームを振動させる。

ビーム不安定から逃れるには

- がんばって不安定の原因を加速器コンポーネント から取り除く努力をする
 - HOMの無い高周波加速空洞、スムーズな真空
 - チェンバーなど
- ビームが振動したとき、自然に振動の周波数など が変わっていく仕組みを導入する
 - 多極磁石(6極や8極)、非線形システム
- フィードバックシステムで、振動を押さえ込む
 - 個別バンチフィードバックシステム

横方向フィードバックシステム

- 1. Combフィルターで2 GHz(RFx4)付近を抽出
- 2. 信号の引き算
- 3. Σ信号を使ってDC成分(f_{rav}付近)を計算
- 4. DC成分をバンチ電流に依らずキャンセル
- 5. 2 GHzと掛け算
- 6. LPFでRF以下だけ通す
- 7. iGp12デジタルフィルター
- 8. 250 Wアンプ
- 9. フィードバックキッカー

1Uサイズの検波回路 水平と垂直:2台 進行方向:1台

- 1. Combフィルターで2 GHz(RFx4)を抽出
- 2. 信号の引き算
- 3. Σ信号を使ってDC成分を計算
- 4. DC成分をキャンセル(バンチ電流に依らず)
- 5. 2 GHzと掛け算
- 6. LPFでRF以下だけ通す
- 7. iGp12デジタルフィルターへ

iGp12デジタルフィードバックフィルター

- iGpデジタルフィルター(8bit)の後継機
 - 12bit ADC/DAC
 - 10-20 tap FIRフィルター
 - 12 MBメモリー
- DRも含めて12台のiGp12を使用
- ▶ PLL回路を使った1バンチ励振
- Transient-domain解析

減衰

10 12 Transform

- FBをある瞬間にoffにして、ビーム不安定の 成長を測定・記録する。
- FBを再びonにしてビーム不安定が抑制される様子も測定できる。

Fit Ser. 1

Fit Ser.2

Fit Ser.3

Rt Ser.4

Tmin 1

Tmax 11

1.9

2.0

8104

- 1520 - 1507 - t=1,7mp

t=1.9ms
 t=2.0ms

t=1.9m

IP軌道フィードバック (Fast orbit FB)

- IPでの垂直方向ビーム軌道のフィードバック
- IPに近い4極磁石が数十Hzで200 nm程度振動すると測定・計算から推測 → IPでのビーム間距離は20 nm程度。これは垂直ビームサイズ~50 nmに比べて非常に大きい。
- 垂直ビームサイズ(rms)に対して20%(50%)のずれで2%(10%)のルミノシティロス。

位置決定精度 <1 µm
 位置情報レート 32 kHz

FBコントローラと電源コントローラ

MicroTCA form factor based on LLRF processors (STF and KEKB) Vertex5 FPGA (with PPC) ADCs on mezzanine card Built-in EPICS on PPC

MTCA.4 form factor Zyng FPGA with built-in EPICS controller

IP軌道フィードバックの様子

<u>H</u>elp

kick(mon)

ビームサイズを測る

- (放射)光モニター = ビームサイズモニター
- X線領域
 - 水平・垂直ビームサイズ:X線モニター(XRM)
 - トンネル内で測定。横方向だけに特化。
 - KCGで出てくる水平・垂直ビームサイズは全てXRMの測定値。
- 可視光領域
 - 水平・垂直ビームサイズ:干渉計(SRM)、ゲートカメラ
 - 進行方向ビームサイズ(バンチ長):ストリークカメラ
 - 地上で測定している。光路が各リング一本なので排他的になる。

H

ST.

ビームロスを測る

イオンチェンバー (~ms)

PINフォトダイオード (~ns)

読み出し、制御

- •Digitex 18k14 ADC
- •8, 16bit simultaneouse sampling ADC (AD7606)
- •1kSPS + up to 64kSPS oversampling
- •Spartan6 XC6SLX45 FPGA

Yokogawa FA-MA system 32bit TTL Input X 2 32bit TTL output

その他の検波器

• 軌道逸脱モニター・インターロック

- Libera Brilliance+
 - turn-by-turn mode, latency <10 turns
 - Evaluation in progress: Latency < 4 turns

Medium-band detector

- Libera Brilliance+, FA mode (10kHz)
- Tsukuba local chromaticity correction area

まとめ

- SuperKEKBのモニターを広く浅く紹介しました。
- 同様のモニターは世界中の加速器で使われていますが、個々の加速器の事情の合わせてチューニングされています。
 →素粒子実験のハード・ソフトと同じで、開発の腕の見せ所
- 浅学故に全くの間違い・勘違いがあると思います。
 →「勘違いしていても加速器では食べて行ける様だ」
 と好意的に受け取って頂けると幸いです。

参考文献

- OHOセミナーの資料 OHO'19はSuperKEKB特集、OHO'20はモニター特集
- 平松成範、加速器のビームモニター
 KEKB時代のモニターは全部書いてある、電子回路の説明に厚い
- H. Wiedemann, Particle Accelerator Physics (Springer)
 何でも書いてあるがそれ故に道に迷いがち、辞書的に使用

これからの展開 #2:X線干渉計

●これまでのX線モニターの原理は幾何光学(縞模様に波長依存なし)。

●波長情報を光源サイズ測定に使えないか? ⇒ 空間コヒーレンスを用いた干渉計

● 縞模様の深さは(光源の大きさ/波長)の関数になるので、波長単位でサイズが測れる。
 ⇒ 波長の短いX線~0.1 nmを使えば、かなり小さい光源サイズも測れる。

$$F[f] = \frac{\int_R e^{-i2\pi sx} f(x|\sigma) dx}{\int_R f(x|\sigma) dx} \to e^{-2(\pi\sigma s)^2} e^{i\delta} \quad \left(s = \frac{d}{z\lambda}\right)$$

光源からスリットまでの距離(z)とスリット 幅(d)をスケールすれば、FCC-eeで想定さ れるビームサイズの測定実証試験になる。

	SuperKEKB	FCC-ee
ビームサイズ	< 10 µm	< 10 µm [1]
スリット幅 d	30 µm	300 µm
光源ースリットz	~10 m	~100 m

[1] Thibaut Lefevre, FCCW 2019, Brussels

第二マスクチェンバー 第一マスクチェンバー

- 2019-2020年度に開発。熱伝導・振動対策面で種々の改良を加えた。
- 2021年7月にHER X線ラインに設置。リーク・昇降装置動作試験完了。
- 2021c(2021/10-12)からは従来の第一チェンバーを衝突運転時に使用し、 X線干渉計のstudy時のみに第二チェンバーを使用。

干渉縞のシミュレーション

