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1. Motivation and Setup



The SM has withstood the test of time. (~50 years!)

Agreement between theory and experiment across ~14 orders of magnitude.

Tests of the Standard Model



Yet we know there’s new physics out there…

dark matter

matter/anti-matter asymmetry

neutrino masses



hierarchy problem
grand unification

flavor puzzle
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strong CP problem

Yet we know there’s new physics out there…



LHC and Big Data

At the LHC we have the highest energy collider ever built, generating 
copious amounts of data. 

• 600 million collisions per second

• Raw data rate ~ 1 PB/s (1 PB=10^6 GB)

• Actual data rate ~ 25 GB/s 

• Need to trigger on 1 out of 40,000 events

• ~ 10’s of PB annually

There is enormous discovery potential 
for new physics!



Anomaly Detection at the LHC

But if there is physics beyond the SM in the data, it’s likely to be rare and 
surrounded by SM background. Otherwise we would have seen it already!

This calls for

• sophisticated techniques to dig the signal out of the data.

• careful and precise background estimation



Generally, the idea is to design and optimize a discriminant sensitive to 
new physics vs. SM background. 

Anomaly Detection at the LHC

Figure 4. Scatter plot of R(x|m) versus log pbackground(x|m) across the test set in the SR. Background
events are shown (as a two-dimensional histogram) in grayscale and individual signal events are shown
in red.

Figure 5. Left: Histogram of R(x|m) evaluated on the test set; Right: the integrated number of
events that survive a threshold on R(x|m). The two distributions are scaled to represent the rates for
500,000 total background events and 500 total signal events, as introduced in Sec. 4.

to have the same number of events as each other and in total, the same as the SR. A single NN
with four hidden layers with 64 notes each is trained using Keras [120] and TensorFlow [121].
Dropout [122] of 10% is used for each intermediate layer. Intermediate layers use rectified
linear unit activation functions and the last layer uses a sigmoid. The classifier is optimized

– 14 –

R(x)



from Nachman & DS 2001.04990
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Searches make different levels of assumptions about the signal model (e.g. 
gluinos, general resonance, anything …) and the background model (SM 
simulation or data-driven).

Anomaly Detection at the LHC



2. Conventional 
methods



The most common approach: 
Model specific searches

RS(x) =
L(x|Ssim)

L(x|Bsim)
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The most common approach: 
Model specific searches

Rely on simulations of background and 
signal to construct likelihood ratio. 

If simulations are sufficiently accurate 
(generally not the case!), then optimal for 
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The most common approach: 
Model specific searches

Rely on simulations of background and 
signal to construct likelihood ratio. 

If simulations are sufficiently accurate 
(generally not the case!), then optimal for 
specific S by Neyman-Pearson Lemma

signal and 
background model 

dependent

x: some set of relevant features 
characterizing each event (almost 
always binned)

> 99% of searches at the LHC are of this type

S: a specific signal model, e.g. 
supersymmetry

RS(x) =
L(x|Ssim)

L(x|Bsim)
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Current Status of NP Searches @ LHC
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Current Status of NP Searches @ LHC

By now, hundreds (thousands?) of model-specific 
searches for new physics at the LHC.

No positive signals so far, only limits. 

Maybe we don’t know what we’re looking for?



Previous model-independent approaches
“the general search”

R(x) =
L(x|data)
L(x|Bsim)
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Previous model-independent approaches
“the general search”

Idea: compare data vs simulated SM background in 1D histograms. 

x: a single feature (almost 
always binned)

R(x) =
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Previous model-independent approaches
“the general search”

Idea: compare data vs simulated SM background in 1D histograms. 
 
[Can also imagine turbocharged version: train DNN on full phase space to 
distinguish data from background MC (D’Agnolo, Wulzer et al 1806.02350, 1912.12155)]

Data vs bg likelihood ratio: not optimal for any specific signal, but could 
be optimal for rejecting background hypothesis.

fully signal model 
independent

background model 
dependent

x: a single feature (almost 
always binned)

Long but somewhat neglected history of 
searches of this type

R(x) =
L(x|data)
L(x|Bsim)
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A brief history of model independent searches in HEP:

• D0

• H1 (Hera)

• CDF

• CMS

• ATLAS

“General Search”

“MUSIC”

“Sleuth”

“Sleuth/Vista”

PRD 62:092004 (2000)
PRD 64:012004 (2001)
PRL 86:3712 (2001)

PLB 602:14-30 (2004)
0705.3721

0712.1311 PRD 78:012002 (2008)
0712.2534 (submitted to PRL, NEVER PUBLISHED)
0809.3781 PRD 79:011101 (2009)

1807.07447 EPJC 79:120 (2019)“Model independent 
general search”

CMS-PAS-EXO-14-016

Previous model-independent approaches



An example of what is found

From B. Knuteson talk at UMich (2008)
Bruce Knuteson  12Bruce Knuteson  
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Sample discrepant distribution (parton showering suspected)

Problem  Solution  Vista  Sleuth  Surprise!  Bard  Quaero  TurboSim



Previous model-independent approaches
“the bump hunt”

Idea: assume signal is localized in m while background is smooth. 

Use sidebands m∉(m0-δm,m0+δm) to interpolate background into 
signal region m∈(m0-δm,m0+δm).

partially signal and 
background model  

independent
m: a single feature

Classic method, used in many discoveries

R(m) =
L(m|data)
L(m|Bdata)
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Previous model-independent approaches
“the bump hunt”

Higgs, Z, …



Previous model-independent approaches
“the bump hunt”

Also a classic search for new physics — e.g. a hypothetical heavy BSM 
particle that decays to pairs of jets



Overview of search strategies

from Nachman & DS 2001.04990
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Figure 6. A histogram of the classifier output for a neural network trained to distinguish ‘data’
(Pythia) and ‘simulation’ (Herwig) in the signal region.

Figure 7. The four features used for machine learning in the signal region, before and after applying
dctr: jet mass (top) and the N -subjettiness ratios ·21 (bottom) for the more massive jet (left) and
the less massive jet (right).

– 10 –

Figure 1: The schematic diagram of an autoencoder. The input is mapped into a low(er) dimensional
representation, in this case 6-dim, and then decoded.

threshold.

For concreteness, we will focus in this work on distinguishing “fat” QCD jets from

other types of heavier, boosted resonances decaying to jets. Building on previous work

on top tagging [12], we will concentrate on machine learning algorithms that take jet

images as inputs. For signal, we will consider all-hadronic top jets, as well as 400 GeV

gluinos decaying to 3 jets via RPV. Obviously, this is not meant to be an exhaustive

study of all possible backgrounds and signals and methods but is just meant to be a

proof of concept. The idea of autoencoders for anomaly detection is fully general and not

limited to these signals. We will comment on other forms of inputs in section 5. Moreover

there are many other anomaly detection techniques that are not based on autoencoder

and/or on reconstruction (loss) which are worth exploring in future work. At the same

time autoencoders have been recently used in other high energy physics applications:

in parton shower simulation [28], for feature selection of a supervised classification [30],

and for automated detection of detector aberrations in CMS [31].

We will explore various architectures for the autoencoder, from simple dense neural

networks to convolutional neural networks (CNNs), as well as a shallow linear represen-

tation in the form of Principal Component Analysis (PCA). We will see that while they

are all e↵ective at improving S/B by factors of ⇠ 10 or more, they have important dif-

ferences. The reconstruction errors of the dense and PCA autoencoders correlate more

highly with jet mass, leading to greater S/B improvement for the 400 GeV gluinos com-

pared to the CNN autoencoder. While this may seem better at first glance, we discuss

how one might want to use an autoencoder that is decorrelated with jet mass, in order

to obtain data-driven side-band estimates of the QCD background and perform a bump

hunt in jet mass. Indeed, we show how cutting on the reconstruction error of the CNN

autoencoder results in stable jet mass distributions, and we show how this can be used

to improve S/B by a factor of ⇠ 6 in a jet mass bump hunt for the 400 GeV gluino

2

CWoLa Hunting
19

Application to Bump Hunt

In signal region:
S = 522,
S/B = 0.64%

2σ

3.8σ

4.2σ

7σ

4

Figure 1. (Upper plot) ROC curves for the LDA top jet tag-
gers compared to the DeepTop tagger [22, 23] (colored trian-
gles) for events with fat-jets satisfying pT 2 [350, 450] GeV.
The purple star represents the default JH top tagger [8] ref-
erence point. (Lower plot) ROC curves for the tt̄ LDA event
classifiers compared to the classifiers from the DeepTop (col-
ored triangles) and the JH top tagger (purple star). In both
plots the shaded bands represent the mean-average-deviation
extracted from the k-folding procedure. See text for details.

ous supervised taggers in the literature [8, 22, 23]. We
see that the taggers perform well and with relatively
small variance, with the supervised tagger performing
the best. An interesting observation is that at high
background rejection rates (1/✏b � O(few)) the taggers
trained on smaller S/B perform slightly better than the
tagger trained on the S/B = 1 sample, although the dif-
ferences are comparable to the estimated uncertainties.
This is essentially because the algorithm is designed to
discern features in the jet substructure, which are sub-
sequnetly used to tag jets and events. In the supervised
and S/B = 1 case the algorithm discovers features in
top jets both near mj0 ⇠ mt and mj0 ⇠ mW (see the
right plot in Fig. 2), while in the lower S/B cases the
algorithm is only able to identify mj0 ⇠ mt as relevant.

50 100 150 200 250

p(
m

j 0
|
t)

50 100 150 200 250
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0.8
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m
j 1
/m

j 0

0 0.008 0.016

50 100 150 200 250
mj0 [GeV]
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Figure 2. 2D projected probability distributions (in the plane
of mj0 and mj1/mj0 ) of the two latent themes discovered
in mixed (S/B = 1) QCD and tt̄ event samples with fat-jets
satisfying pT 2 [350, 450] GeV.

On the other hand, lower mj0 regions generically feature
more prominently in QCD jets (see left plot in Fig. 2).
Thus, while a very accurate determination of the fea-
tures near mj0 ⇠ mW in the supervised case helps the
performance of the tagging algorithm, the worse resolu-
tion in the unsupervised S/B = 1 case leads to worse
tagging performance compared to lower S/B examples.
We see that the performance of the unsupervised taggers
is comparable to the original JH top tagger [8], although
it falls short in comparison to the others. We note that
the observables we use mostly match those used in the
JH top tagger, hence the similar performance is indeed
encouraging.

In Fig. 1 (lower panel) we plot the ROC curves for our
tt̄ event classifiers, where a single document now con-
tains all jets within the selected pT region in an event,
and again compare these to the top jet taggers in the
literature. To make the comparison with other taggers
fair, we re-scale those results by defining an event tag-
ging e�ciency (✏e) in terms of the jet tagging e�ciency
(✏j) and the fraction of events in our pure samples with
one (f1) and two (f2) jets passing the selection cuts3,
✏e = (2✏j � ✏2j )f2 + ✏jf1. This means in practice that
tagging an event as tt̄ requires at least one jet in the
event to be tagged as a top jet. The ROC curves do
not change significantly under this re-scaling, instead the
points move along a trajectory towards higher e�ciencies
approximately equal to that of the ROC curve for jet tag-
ging. We see again that the classifier performs very well
in all cases, performing as well as the JH top tagger even
for low S/B.

3 We have checked that the fractions of events with zero or more
than two jets passing the selection cuts are negligible.

K-NN density

ratio estimation

Test Statistic

permutation test

p value

TS distribution 

-|TSobs|

TSobs
Benchmark sample

Trial sample

|TSobs|

Figure 1. Schematic view of the proposed method to compute the p-value of the null hypothesis
that the two samples are drawn from the same probability density.

The test statistic defined in Eq. (2.5) is also equal to the estimated Kullback-Leibler

(KL) divergence D̂KL(p̂T ||p̂B) between the estimated PDFs of trial and benchmark samples,

with the expectation value replaced by the empirical average (see Appendix A and in

particular Eq. (A.2)). The KL divergence plays a central role in information theory and can

be interpreted as the relative entropy of a probability distribution with respect to another

one. Our choice is also motivated by the fact that the log function in Eq. (2.5) makes the

test statistic linearly sensitive to small di↵erences between the distributions. Of course,

other choices for the test statistic are possible, based on an estimated divergence between

distributions other than the KL divergence, e.g. the Pearson squared-error divergence. The

exploration of other possibilities is beyond the scope of this paper and is left for future

work.

Ultimately, we want to conclude whether or not the null hypothesis can be rejected,

with a specified significance level ↵ (e.g. ↵ = 0.05), therefore we need to associate a

p-value to the null hypothesis, to be compared with ↵. To this end, we first need to

estimate the PDFs p̂B,T from the samples, then compute the test statistics TSobs observed

on the two given samples. Next, in order to evaluate the probability associated with the

observed value TSobs of the test statistic, we need to reconstruct its probability distribution

f(TS|H0) under the null hypothesis H0, and finally compute a two-sided p-value of the null

hypothesis.

The distribution of the test statistic is expected to be symmetric around its mean (or

median), which in general may not be exactly zero as a finite-sample e↵ect. Therefore, the

two-sided p-value is simply double the one-sided p-value.

A schematic summary of the method proposed in this paper is shown in Figure 1. In

the remainder of this section we will describe this procedure in detail.

– 5 –
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Figure 4. Scatter plot of R(x|m) versus log pbackground(x|m) across the test set in the SR. Background
events are shown (as a two-dimensional histogram) in grayscale and individual signal events are shown
in red.

Figure 5. Left: Histogram of R(x|m) evaluated on the test set; Right: the integrated number of
events that survive a threshold on R(x|m). The two distributions are scaled to represent the rates for
500,000 total background events and 500 total signal events, as introduced in Sec. 4.

to have the same number of events as each other and in total, the same as the SR. A single NN
with four hidden layers with 64 notes each is trained using Keras [120] and TensorFlow [121].
Dropout [122] of 10% is used for each intermediate layer. Intermediate layers use rectified
linear unit activation functions and the last layer uses a sigmoid. The classifier is optimized

– 14 –

ANODE

SALAD
3. New 

approaches
New!

New!



Searching for NP with deep autoencoders
   Heimel et al 1808.08979;   Farina, Nakai & DS 1808.08992

Figure 1: The schematic diagram of an autoencoder. The input is mapped into a low(er) dimensional
representation, in this case 6-dim, and then decoded.

threshold.

For concreteness, we will focus in this work on distinguishing “fat” QCD jets from

other types of heavier, boosted resonances decaying to jets. Building on previous work

on top tagging [12], we will concentrate on machine learning algorithms that take jet

images as inputs. For signal, we will consider all-hadronic top jets, as well as 400 GeV

gluinos decaying to 3 jets via RPV. Obviously, this is not meant to be an exhaustive

study of all possible backgrounds and signals and methods but is just meant to be a

proof of concept. The idea of autoencoders for anomaly detection is fully general and not

limited to these signals. We will comment on other forms of inputs in section 5. Moreover

there are many other anomaly detection techniques that are not based on autoencoder

and/or on reconstruction (loss) which are worth exploring in future work. At the same

time autoencoders have been recently used in other high energy physics applications:

in parton shower simulation [28], for feature selection of a supervised classification [30],

and for automated detection of detector aberrations in CMS [31].

We will explore various architectures for the autoencoder, from simple dense neural

networks to convolutional neural networks (CNNs), as well as a shallow linear represen-

tation in the form of Principal Component Analysis (PCA). We will see that while they

are all e↵ective at improving S/B by factors of ⇠ 10 or more, they have important dif-

ferences. The reconstruction errors of the dense and PCA autoencoders correlate more

highly with jet mass, leading to greater S/B improvement for the 400 GeV gluinos com-

pared to the CNN autoencoder. While this may seem better at first glance, we discuss

how one might want to use an autoencoder that is decorrelated with jet mass, in order

to obtain data-driven side-band estimates of the QCD background and perform a bump

hunt in jet mass. Indeed, we show how cutting on the reconstruction error of the CNN

autoencoder results in stable jet mass distributions, and we show how this can be used

to improve S/B by a factor of ⇠ 6 in a jet mass bump hunt for the 400 GeV gluino

2

An autoencoder maps an input into a reduced “latent representation” 
and then attempts to reconstruct the original input from it.   

Can use reconstruction error as an anomaly threshold!

Latent layer

See also:  
Hajer et al “Novelty Detection Meets Collider Physics” 1807.10261  
Cerri et al “Variational Autoencoders for New Physics Mining at the Large Hadron Collider” 1811.10276



Performance

Figure 2: Distribution of reconstruction error computed with a CNN autoencoder on test samples of
QCD background (gray) and two signals: tops (blue) and 400GeV gluinos (orange).

We see that the autoencoder works as advertised: it learns to reconstruct the QCD

background that it has been trained on (to be precise, we train on 100k QCD jets and

then we evaluate the autoencoder on a separate sample of QCD jets), and it fails to

reconstruct the signals that it has never seen before. This is further illustrated in Fig. 3,

which shows the average QCD, top and gluino jet image before and after autoencoder

reconstruction. We see by eye that the QCD images are reconstructed well on average,

while the others contain more errors.

By sliding the reconstruction loss threshold L > LS around, we can turn the his-

tograms in Fig. 2 into ROC curves. The ROC curves for the di↵erent autoencoder

architectures are shown in Fig. 4 for the top and gluino signals. For comparison we have

also included the ROC curve obtained by cutting on jet mass as an anomaly threshold.

While the three architectures have comparable performances it is clear there are some

important di↵erences. For tops, the CNN outperforms the others, while for gluinos the

situation is largely reversed. Surprisingly, for gluinos, the CNN is even outperformed

by the humble PCA autoencoder at all but the lowest signal e�ciencies! We will ex-

plore this in more detail in section 4.2, but a clue as to what’s going on is shown in

the comparison of the PCA ROC curve with the jet mass ROC curve. For gluinos,

they track each other extremely closely, suggesting that the PCA reconstruction error is

highly correlated with jet mass. We will confirm this in section 4.2. Evidently, the PCA

autoencoder (and to a lesser extent the dense autoencoder) has learned to reconstruct

7

It works as an anomaly detector!

Robust against contamination with signal — can use in fully unsupervised mode

background (QCD)
signal (tops and 400 
GeV RPV gluinos)



Background estimation

Discriminant is useless without an accurate background prediction. 

One idea: combine autoencoder with a bump hunt in jet mass.  
Estimate backgrounds using sidebands in mass.

Only works if cutting on reconstruction error does not sculpt the mass 
distribution of the background!

This would greatly 
underestimate the 
background in the SR

SRsideband sideband



Bump hunt with autoencoder
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Figure 10: The left figure shows the average mass in bins of increasing reconstruction error, for the
di↵erent autoencoder architectures. We see that the PCA and dense autoencoder losses are highly
correlated with jet mass all the way up to 400 GeV, while the CNN becomes uncorrelated for masses
above ⇠ 300 GeV. The right figure illustrates this with jet mass histograms for the QCD background.
We see that they are stable against increasingly hard cuts on the reconstruction error.

for jet masses above ⇠ 300 GeV.3

To illustrate the possibilities of searching for new physics in this way, by first “clean-

ing” the QCD background using the CNN autoencoder and then doing a bump hunt in

jet mass, we include Fig. 11. These are the jet mass histograms for QCD background

and 400 GeV gluinos, now normalized to the LO gluino and QCD cross sections, before

(left) and after (right) a cut on CNN autoencoder loss that removes a factor of 1000 of

the QCD background. Importantly, we have trained to autoencoder on a mixed sample

containing the expected fraction of gluino jets, corresponding to an overall contamination

fraction of 10�3. This would be representative of the actual data, if it really contained

these gluinos.

We see that the S/B achievable here in a mass window around the gluino mass is

⇡ 25%. As can be seen clearly from the histograms, this is an impressive improvement

on the S/B before the cut (i.e. just from the raw jet mass histogram), which is only

⇡ 4%. This improvement in S/B could be important in situations where S/B is small

and we are limited by systematic and not statistical errors.

We can similarly quantify the gain in statistical significance. According to the ROC

curve in fig. 4 right (again, the ROC curve for unsupervised learning with this small

amount of contamination will be very similar), the significance improvement ✏S/
p
✏B is

approximately a factor of 1.25 at this working point. At working points with higher

e�ciency, it is as much as a factor of 2 � 3. One could plausibly discover new physics

3We note that a better approach would probably be to explicitly decorrelate the autoencoder output
with jet mass, e.g. using an adversarial network. This would be interesting to explore further (in fact,
see [46]) but it is beyond the scope of this work.
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We found empirically that the background jet mass distribution is fairly 
stable against cuts on CNN AE reconstruction loss above ~250 GeV.



Autoencoder with explicit decorrelation

A more controlled approach to mass decorrelation would be to explicitly 
penalize correlations in the training of the autoencoder.

One promising method: autoencoder with adversarial decorrelation  
(Heimel et al 1808.08979; based on 1611.01046, 1703.03507)

• Introduce a second NN, the adversary, that tries to predict the mass from the 
reconstruction loss. 

• Penalize the total loss function when the adversary does well. 

Ladv =
X

i

(fadv(LAE(xi))�mi)
2
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Ltot = LAE � �Ladv
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

See Tilman’s talk for more on this (?)



Alternatives to adversaries

Adversaries are notoriously tricky to train — saddle point optimization

Would be great if we could achieve the same performance but with a convex 
regularizer term

First idea: can we just use Pearson correlation coefficient?

Problem: this only measures linear correlations

min
✓clf

max
✓adv

Lclf(y(✓clf))� �Ladv(y(✓clf),m; ✓adv)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

min
✓clf

Lclf(y(✓clf)) + �Creg(y(✓clf),m)
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Creg = R(y,m) /
X
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Pearson correlation

y and m can be highly correlated yet R=0



Distance correlation (“DisCo”)

Promising idea: “distance correlation”  
(Szekely, Rizzo, Bakirov 2007; Szekely & Rizzo 2009)

• Zero iff X, Y are independent; positive otherwise

• Computationally tractable

• Straightforward sample definition — doesn’t require binning

There are many information-theoretic measures of similarity of distributions such as

KL-divergence, Jensen-Shannon distance, and mutual information, but these all require

knowledge of the underlying probability distribution and/or binning, so they cannot be

computed directly from the sample.

One measure that seems to fit the bill perfectly is “distance correlation”, which

originated in the works of [? ? ? ? ]. It can be computed from the sample and it has

the key property that it is zero i↵ X and Y are independent.

The definition of distance covariance is:

dCov2(X, Y ) =

Z
dpsdqt |fX,Y (s, t)� fX(s)fY (t)|2w(s, t) (1)

where X 2 Rp, Y 2 Rq, fX and fY are the characteristic functions for the random

variables X and Y , and fX,Y is the joint characteristic function for X and Y . Finally

w(s, t) / |s|�(p+1)|t|�(q+1) (2)

is a weight function that is uniquely determined up to an overall normalization by the

requirement that dCov is invariant under constant shifts and orthogonal transformations,

and equivariant under scale transformations [? ]. Since fX,Y = fXfY i↵ X and Y are

independent random variables, the definition (1) makes clear that distance covariance is

a measure of the independence of X and Y that is zero i↵ X and Y are independent.

Using the definition of the characteristic function it is straightforward to verify that

we can also express dCov as

dCov2(X, Y ) = h|X �X 0||Y � Y 0|i+ h|X �X 0|ih|Y � Y 0|i � 2h|X �X 0||Y � Y 00|i (3)

where |·| refers to the Euclidean vector norm1 and (X, Y ), (X 0, Y 0), (X 00, Y 00) are iid from

the joint distribution of (X, Y ). Using this alternative form of dCov2 it is straightforward

to compute a sampling estimate of dCov2 from a dataset of (Xi, Yi).

Finally, we normalize the distance covariance by the individual distance variances to

obtain distance correlation:

dCorr2(X, Y ) =
dCov2(X, Y )

dCov(X,X)dCov(Y, Y )
(4)

The distance correlation is bounded between 0 and 1. Normalizing prevents the NN from

shrinking the range of Y to trivially reduce the distance covariance without actually

achieving mass decorrelation.

1
In fact there is a family of distance covariance measures parameterized by 0 < ↵ < 2 where one

uses |X�X 0|↵ instead of |X�X 0|. These relax the requirement of strict equivariance under rescalings.

In this paper we will focus on ↵ = 1 but in principle this would be another hyperparameter to explore.

3



Disco is sensitive to nonlinear correlations!

Distance correlation (“DisCo”)
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the physics task at hand than full mass-decorrelation.

7.3 Combined metric

A combined metric, reflecting both classification performance and mass-decorrelation, is necessary to
assess the trade-o�s balanced by each of the mass-decorrelation procedures. A more complete picture of
the performance is found by plotting the two metrics together. Figure 11 shows the mass-decorrelation
(1/JSD) versus the background rejection (1/"rel

bkg) for tagger cuts at "rel
sig = 50%, in two pT bins. The x-axis

measures classification power and the y-axis measures mass-decorrelation, with larger values along each
indicating better performance. For any given task, a specific direction in the plane of Figure 11 will
correspond to the best trade-o�.

For each of the mass-decorrelated MVA taggers, several working points are evaluated, by scanning � for
the ANN tagger and ↵ for uBoost. For high values of � (& 10), the ANN method starts to saturate given
the chosen network configurations, training procedures, and datasets.
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Figure 11: Unified plot of the metrics for classification (background rejection, 1/"rel
bkg) and mass-decorrelation

(inverse Jensen-Shannon divergence‚ 1/JSD), for cuts corresponding to "rel
sig = 50%, in two pT bins. Greater

values along each axis indicate better performance. Standard classifiers are indicated with filled markers. Mass-
decorrelated classifiers are indicated with open markers, with parameter scans traced out by dashed lines. The
shaded grey band indicates the statistical limit on 1/JSD from the finite number of simulated jets.

The dashed line and shaded band at high 1/JSD indicate the statistical limit of the mass-decorrelation,
estimated using bootstrap sampling.

Figure 11 shows that for equal levels of mass-decorrelation, the (A)NN tagger generally provides the
greatest background rejection. The BDT-based MVA taggers have comparable performance to the NN-
based taggers for the standard variants, but the adversarial training mass-decorrelation method is seen to
perform better than the uBoost method for the chosen configurations. From Figure 11(b), the e�ect of
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(inverse Jensen-Shannon divergence‚ 1/JSD), for cuts corresponding to "rel
sig = 50%, in two pT bins. Greater

values along each axis indicate better performance. Standard classifiers are indicated with filled markers. Mass-
decorrelated classifiers are indicated with open markers, with parameter scans traced out by dashed lines. The
shaded grey band indicates the statistical limit on 1/JSD from the finite number of simulated jets.

The dashed line and shaded band at high 1/JSD indicate the statistical limit of the mass-decorrelation,
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Figure 11 shows that for equal levels of mass-decorrelation, the (A)NN tagger generally provides the
greatest background rejection. The BDT-based MVA taggers have comparable performance to the NN-
based taggers for the standard variants, but the adversarial training mass-decorrelation method is seen to
perform better than the uBoost method for the chosen configurations. From Figure 11(b), the e�ect of
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Figure 11 shows that for equal levels of mass-decorrelation, the (A)NN tagger generally provides the
greatest background rejection. The BDT-based MVA taggers have comparable performance to the NN-
based taggers for the standard variants, but the adversarial training mass-decorrelation method is seen to
perform better than the uBoost method for the chosen configurations. From Figure 11(b), the e�ect of
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•Brief review of decorrelation Tools

•Recasting ATLAS

•Enter Distance Correlation (DisCo)

•Results

Overview
DisCo decorrelation 4

the false positive rate (the probability to mis-identify a
QCD jet as W jet) at a true positive rate (the probabil-
ity to correctly identify a W jet) of 50%. The decorre-
lation is quantified by the inverse of the Jensen-Shannon
Divergence 1/JSD50 between the inclusive background
distribution and the background distribution passing the
selection corresponding to a true positive rate of 50%.
The Jensen-Shannon Divergence is calculated from his-
tograms with 50 bins between lowest and highest value.
The binned entropy is measured in bits.

We have implemented the following pairs of
(W -tagging, decorrelation) methods in our work.
From the ATLAS study: (⌧21, DDT) [38, 49], (D2,
kNN) [50–52], (Adaboost BDT, uBoost) [53], and
(DNN, adversary) [30]. We will additionally include
the simplest and possibly oldest decorrelation method,
namely “planing,” or reweighting events so that the mass
histograms of signal and background are identical. As
this approach is relatively simple to implement and does
not add much computational cost, it is a good baseline
procedure.6 Finally, to all of this we will add our new
method (DNN, DisCo regularization) for comparison.
For details on all these methods, see Appendix A.

In addition, we will go beyond the ATLAS study
and examine a CNN classifier acting on jet images, to-
gether with adversarial and DisCo decorrelation. This
will demonstrate that DisCo regularization is e↵ective
enough to decorrelate more powerful deep learning clas-
sifiers that use low-level, high-dimensional features. For
the CNN classifier we use a scaled down version of the
classifier in [47]. There are 4 convolutional layers with
64, 32, 32, 32 filters (size 4⇥ 4), with 2⇥ 2 Max pooling
after the second and fourth layer. This is followed by 3
hidden layers with 32, 64 and 64 nodes. All activations
are ReLU. Finally we output to softmax.

For both CNN and DNN with DisCo regularization,
we used the Adam optimizer with mini-batch size of 2048
and a fixed learning rate of 10�4. We found that the rel-
atively large batch size of 2048 helped with the numeri-
cal stability of the DisCo regularizer. All classifiers were
trained for 200 epochs, no early stopping was used. The
best performing models were selected on the basis of the
validation set: models were grouped in bins of the back-
ground rejection rate at 50% signal e�ciency (R50), and
then the model with the highest (validation) 1/JSD50 in
each bin was selected.

In all of the ML based methods we use 250k/80k/80k
signal jets and 110k/330k/770k background jets for train-
ing/validation/testing. We use so many background jets
in order to minimize the statistical error on the JSD cal-
culation (which is calculated only for the background).

The deep learning algorithms were implemented with
PyTorch and trained on an NVIDIA P100 GPU.

6
See [54] for a recent comparison study of planing against other

methods.

FIG. 3: Decorrelation against background rejection for di↵er-
ent approaches.

FIG. 4: QCD mass distribution before and after a cut on
CNN plus DisCo (W -tagging) with signal e�ciency of 50%
and JSD ⇠ 10�3.

Results
Our final result is shown in fig. 3, where the perfor-
mance of various decorrelation methods on the test set
is summarized in the plane of 1/JSD50 (which measures
decorrelation) vs. R50 (which measures classifier perfor-
mance). The qualitative (and even quantitative) agree-
ment with fig. 11(a) of [37] is excellent, and we see a clear
tradeo↵ between classifier performance and the amount
of decorrelation.
Comparing DNN+DisCo to the other methods, we find

that it has comparable performance to DNN+adversary.
Meanwhile it is much easier to train – whereas DisCo
adds exactly one hyperparameter and no additional neu-
ral network parameters to the DNN, the adversary more

Comparable performance to 
adversary.

Much easier to train.

Gregor Kasieczka & DS 2001.05310



Enhancing the bump hunt

We have seen that one way to turn an autoencoder into an actual NP 
search is to combine it with a bump hunt. 

However, what the autoencoder finds is rather uncontrolled and there 
is no guarantee of optimality (even asymptotically).

Can we get more if we build in the bump hunt assumption from the 
outset?



Enhancing the bump hunt

A growing number of methods aim to enhance the bump hunt using 
additional features:
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FIG. 1. Left: mJJ distribution of dijet events (including injected signal, indicated by the filled histogram) before and after
applying jet substructure cuts using the NN classifier output for the mJJ ' 3 TeV mass hypothesis. The dashed red lines
indicate the fit to the data points outside of the signal region, with the gray bands representing the fit uncertainties. The
top set of markers represent the raw dijet distribution with no cut applied, while the subsequent sets of markers have cuts
applied at thresholds with e�ciency of 10�1, 10�2, 2⇥ 10�3, and 2⇥ 10�4. Right: Local p0-values for a range of signal mass
hypotheses in the case that no signal has been injected (left), and in the case that a 3 TeV resonance signal has been injected
(right). The dashed lines correspond to the case where no substructure cut is applied, and the various solid lines correspond
to cuts on the classifier output with e�ciencies of 10�1, 10�2, and 2⇥ 10�3.

to a level of discovery. There are many other possibili-
ties for applying this technique directly to data, in any
case where the signal is expected to be localized in one
dimension. By naturally exploiting the power of modern
machine learning, we hope that this extended bump hunt
will help to expose new distance scales in nature on the
quest for BSM at the LHC and beyond.

The datasets and code used for the case study can be
found at Refs. [48, 49].

We appreciate helpful discussions with and useful feed-
back on the manuscript from Timothy Cohen, Aviv
Cukierman, Patrick Fox, Jack Kearney, Zhen Liu, Eric
Metodiev, Brian Nord, Bryan Ostdiek, Francesco Rubbo,
and Jesse Thaler. We would also like to thank Peizhi
Du for providing the UFO file for the benchmark sig-
nal model. The work of JHC is supported by NSF
under Grant No. PHY-1620074 and by the Maryland
Center for Fundamental Physics (MCFP). The work of
B.N. is supported by the DOE under contract DE-AC02-
05CH11231. This manuscript has been authored by
Fermi Research Alliance, LLC under Contract No. DE-
AC02-07CH11359 with the U.S. Department of Energy,
O�ce of Science, O�ce of High Energy Physics. The
United States Government retains and the publisher, by
accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive,
paid-up, irrevocable, world-wide license to publish or re-
produce the published form of this manuscript, or allow
others to do so, for United States Government purposes.

⇤ jhc296@umd.edu
† khowe@fnal.gov
‡ bpnachman@lbl.gov

[1] Georges Aad et al. (ATLAS), “Observation of a new par-
ticle in the search for the Standard Model Higgs bo-
son with the ATLAS detector at the LHC,” Phys. Lett.
B716, 1–29 (2012), arXiv:1207.7214 [hep-ex].

[2] Serguei Chatrchyan et al. (CMS), “Observation of a new
boson at a mass of 125 GeV with the CMS experi-
ment at the LHC,” Phys. Lett. B716, 30–61 (2012),
arXiv:1207.7235 [hep-ex].

[3] ATLAS Collaboration, “Supersymmetry searches,”
(2018), https://twiki.cern.ch/twiki/bin/view/

AtlasPublic/SupersymmetryPublicResults.
[4] ATLAS Collaboration, “Exotic physics searches,”

(2018), https://twiki.cern.ch/twiki/bin/view/

AtlasPublic/ExoticsPublicResults.
[5] CMS Collaboration, “Cms exotica public physics re-

sults,” (2018), https://twiki.cern.ch/twiki/bin/

view/CMSPublic/PhysicsResultsEXO.
[6] CMS Collaboration, “Cms supersymmetry physics re-

sults,” (2018), https://twiki.cern.ch/twiki/bin/

view/CMSPublic/PhysicsResultsSUS.
[7] CMS Collaboration, “Cms beyond-two-generations (b2g)

public physics results,” (2018), https://twiki.cern.
ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G.

[8] see e.g. Ellis, John R., “Beyond the standard model with
the LHC,” Nature 448, 297–301 (2007).

[9] A model independent general search for new phenomena
with the ATLAS detector at

p
s = 13 TeV, Tech. Rep.

ATLAS-CONF-2017-001 (CERN, Geneva, 2017).
[10] Model Unspecific Search for New Physics in pp Collisions

Enhancing the bump hunt

A growing number of methods aim to enhance the bump hunt using 
additional features:

⇥<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

~x 2 Rd
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

primary resonant feature (m) some additional features

from 1805.02664 



Enhancing the bump hunt

Use deep learning to derive 
something approaching the 
multidimensional likelihood ratio, 
directly from the data

Cut on R>Rc, enhance the bump hunt!
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FIG. 1. Left: mJJ distribution of dijet events (including injected signal, indicated by the filled histogram) before and after
applying jet substructure cuts using the NN classifier output for the mJJ ' 3 TeV mass hypothesis. The dashed red lines
indicate the fit to the data points outside of the signal region, with the gray bands representing the fit uncertainties. The
top set of markers represent the raw dijet distribution with no cut applied, while the subsequent sets of markers have cuts
applied at thresholds with e�ciency of 10�1, 10�2, 2⇥ 10�3, and 2⇥ 10�4. Right: Local p0-values for a range of signal mass
hypotheses in the case that no signal has been injected (left), and in the case that a 3 TeV resonance signal has been injected
(right). The dashed lines correspond to the case where no substructure cut is applied, and the various solid lines correspond
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to a level of discovery. There are many other possibili-
ties for applying this technique directly to data, in any
case where the signal is expected to be localized in one
dimension. By naturally exploiting the power of modern
machine learning, we hope that this extended bump hunt
will help to expose new distance scales in nature on the
quest for BSM at the LHC and beyond.

The datasets and code used for the case study can be
found at Refs. [48, 49].
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2.  AnoDE:  Anomaly Detection with Density Estimation  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2.  AnoDE:  Anomaly Detection with Density Estimation  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Directly learn the conditional probability densities from the data

interpolate in (x,m)
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2.  AnoDE:  Anomaly Detection with Density Estimation  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Directly learn the conditional probability densities from the data

interpolate in (x,m)

Construct the likelihood ratio:
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Directly learn the conditional probability densities from the data

interpolate in (x,m)

Construct the likelihood ratio:

Recent breakthroughs in (neural) density estimation make this possible in 
high dimensions. We used conditional MAF (Papamakarios et al 1705.07057) 
but many other density estimators are possible
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Enhancing the bump hunt
3 new ideas

3.  SALAD:  Simulation Assisted Likelihood-free Anomaly Detection  
Andreassen, Nachman & DS 2001.05001

Simulations in HEP are very good but not good enough to directly compare 
against data. If we could reweight simulations to match data they would be 
much more useful!

• Train a classifier on data vs simulation in sidebands. If this classifier is near-
optimal, it will approach the likelihood ratio (1907.08209) 

• Interpolate into SR

• Using reweighted simulation, generate a sample that follows 

• Train a classifier to distinguish data from this sample

• Obtain a discriminant that approaches

w(~x) =
L(~x|Bdata,m /2 SR)

L(~x|Bsim,m /2 SR)
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LHC Olympics 2020

To facilitate a meaningful comparison between different approaches and 
to spur the development of new ones, in April 2019, Gregor Kasieczka, 
Ben Nachman and I initiated an anomaly detection data challenge:

https://indico.cern.ch/event/809820/page/19002-lhcolympics2020

The LHC Olympics 2020

https://indico.cern.ch/event/809820/page/19002-lhcolympics2020


LHC Olympics 2020: Black Boxes

We prepared three black boxes of simulated data:

• 1 million events each

• 4-vectors of every reconstructed particle (hadron) in the event

• Particle ID, charge, etc not included

• Single R=1 jet trigger pT>1.2 TeV

• Black boxes are meant to be representative of actual data, meaning they are mostly 
background and may contain signals of new physics

In addition, a sample of 1M QCD dijet events (produced with Pythia8 and 
Delphes3.4.1) was provided as a background sample.

https://doi.org/10.5281/zenodo.3547721



LHC Olympics 2020: R&D Dataset

Prior to the challenge, we also released a labeled R&D dataset consisting 
of 1M QCD dijet events and 100k signal events

https://doi.org/10.5281/zenodo.2629072
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No explicit search at the 
LHC for this scenario!



S=500, B=500,000, BSR=61,000 

S/BSR~6x10-3, S/√BSR~1.5
Figure 2. Histograms for the invariant mass of the leading two jets for the Standard Model background
as well as the injected signal. There are 1 million background events and 1000 signal events.

epochs results in a stable result. Averaging over more epochs does not further improve the
stability. All results with ANODE present the SB density estimator with this averaging scheme
for the last 10 epochs.

Figure 4 shows a scatter plot of R(x|m) versus log pbackground(x|m) for the test set in the
SR. As desired, the background is mostly concentrated around R(x|m) = 1, while there is a long
tail for signal events at higher values of R(x|m) and between ≠2 < log pbackground(x|m) < 2.
This is exactly what is expected for this signal: it is an over-density (R > 1) in a region of
phase space that is relatively rare for the background (pbackground(x|m) π 1).

The background density in Fig. 4 also shows that the R(x|m) is narrower around 1 when
pbackground(x|m) is large and more spread out when pbackground(x|m) π 1. This is evidence
that the density estimation is more accurate when the densities are high and worse when
the densities are low. This is also to be expected: if there are many data points close to one
another, it should be easier to estimate their density than if the data points are very sparse.

Another view of the results is presented in Fig. 5, with one-dimensional information
about R(x|m) in the SR. The left plot of Fig. 5 shows that the background is centered and
approximately symmetric around R = 1 with a standard deviation of approximately 17%.
This width is due to various sources, including the accuracy of the SR density, the accuracy of
the SB density, and the quality of the interpolation from SB to SR. Each of these sources has
contributions from the finite size of the datasets used for training, the neural network flexibility,
and the training procedure. The right plot of Fig. 5 presents the number of background and
signal events as a function of a threshold R > Rc. The starting point are the original numbers
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Figure 3. The four features used for classification: mJ1 (top left), mJ1 ≠ mJ2 (top right), ·J1
21 (bottom

left), and ·J2
21 (bottom right). These histograms are inclusive in mJJ . There are 1 million background

events and 1000 signal events for the mass histograms.

background (40,000) and signal (400) numbers in the SR window and the fiducial window.
Starting from low S/B and S/

Ô
B one can achieve S/B > 1 and a high S/

Ô
B with a threshold

requirement on R. Figure 6 shows that the signal is clearly visible in the x distribution after
applying such a threshold requirement.

The performance of R as an anomaly detector is further quantified by the Receiver
Operating Characteristic (ROC) and Significance Improvement Characteristic (SIC) curves in
Fig. 7. These metrics are obtained by scanning R and computing the signal e�ciency (true
positive rate) and background e�ciency (false positive rate) after a threshold requirement
on R. The Area Under the Curve (AUC) for ANODE is 0.82. For comparison, the CWoLa
hunting approach is also shown in the same plots. The CWoLa classifier is trained using
sideband regions that are 200 GeV wide on either side of the SR. The sidebands are weighted
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x = (mJ1 ,mJ2 , ⌧
J1
21 , ⌧

J2
21 )
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Comparing CWoLa vs Autoencoders with LHCO R&D Dataset
Pablo Martin, Ben Nachman & DS work in progress

CWoLa vs Autoencoder

Pablo Martín Ramiro Comparing weak and unsupervised anomaly detection 26 / 27

• Test performance of both methods for different S/B ratios

∆ CWoLa performs better at large cross sections

∆ Autoencoder solid at very low cross sections
Complementary

techniques!

slide credit: Pablo Martin



ANODE: Results on LHCO R&D Dataset
Ben Nachman & DS 2001.04990

Figure 4. Scatter plot of R(x|m) versus log pbackground(x|m) across the test set in the SR. Background
events are shown (as a two-dimensional histogram) in grayscale and individual signal events are shown
in red.

Figure 5. Left: Histogram of R(x|m) evaluated on the test set; Right: the integrated number of
events that survive a threshold on R(x|m). The two distributions are scaled to represent the rates for
500,000 total background events and 500 total signal events, as introduced in Sec. 4.

to have the same number of events as each other and in total, the same as the SR. A single NN
with four hidden layers with 64 notes each is trained using Keras [120] and TensorFlow [121].
Dropout [122] of 10% is used for each intermediate layer. Intermediate layers use rectified
linear unit activation functions and the last layer uses a sigmoid. The classifier is optimized
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The method works! ANODE is sensitive to the signal!



Figure 6. Distributions of mJ1 (left) and mJ2 ≠ mJ1 (right) in the signal region after applying a
threshold requirement on R.

Figure 7. Receiver Operating Characteristic (ROC) curve (left) and Significance Improvement
Characteristic (SIC) curve (right).

using binary cross entropy and is trained for 300 epochs. As with ANODE, 10 epochs are
averaged for the reported results3.

The performance of ANODE is comparable to CWoLa hunting in Fig. 7, which does
slightly better at higher signal e�ciencies and much better at lower signal e�ciencies. This
may be a reflection of the fact that CWoLa makes use of supervised learning and directly
approaches the likelihood ratio, while ANODE is unsupervised and attempts to learn both
the numerator and denominator of the likelihood ratio. With this dataset, ANODE is able to
enhance the signal significance by about a factor of 7 and would therefore be able to achieve a
local significance above 5‡ given that the starting value of S/

Ô
B is 1.6.

3A di�erent regularization procedure was used in Ref. [32, 33] based on the validation loss and k-folding.
The averaging here is expected to serve a similar purpose.
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ANODE: Results on LHCO R&D Dataset
Ben Nachman & DS 2001.04990

Can enhance the significance of the bump hunt by a factor of up to 7!

(For this feature set, the CWoLa independence assumptions are satisfied, and it 
outperforms ANODE. Shows the power of likelihood free methods.)



5.2 Background Estimation

This section explores the possibility of using the estimate of pbackground(x|m) to directly
determine the background e�ciency in the SR after a requirement on R > Rc. Figure 8 presents
a comparison between integration methods (direct integration and importance sampling)
described in Sec. 3.2 and the true background yields. Qualitatively, both methods are able to
characterize the yield across several orders of magnitude in background e�ciency. However,
both methods diverge from the truth in the extreme tails of the R distribution. The right plot
of Fig. 8 o�ers a quantitative comparison between methods. For e�ciencies down to about
10≠3, both methods are accurate within about 25%. The direct integration method has a
smaller bias of about 10%. This is consistent with Fig. 5, for which the standard deviation is
between 10-20%.

Figure 8. Left: The number of events after a threshold requirement R > Rc using the two integration
methods described in Sec. 3.2, as well as the true background yield. Right: The ratio of the predicted
and true background yields from the left plot, as a function of the actual number of events that survive
the threshold requirement. The shaded bands around the central predictions are the 1‡ statistical
(Poisson) uncertainty derived from the observed background counts. The black dashed and dotted lines
are 10% and 20% around a ratio of 1.

5.3 Performance on a Dataset with Correlated Features

The results presented in the previous sections have established that ANODE is able to identify
the signal and estimate the corresponding SM backgrounds introduced in Sec. 4. One fortuitous
aspect of the chosen features x introduced in Sec. 4 is that they are all relatively independent
of mjj . This is illustrated in Fig. 9, using the SR and neighboring sideband regions. As a
result of this independence, the CWoLa method is able to find the signal and presumably the
ANODE interpolation from SB to SR is easier than if there was a strong dependence.

The purpose of this section is to study the sensitivity of the ANODE and CWoLa hunting
methods to correlations in the features x with mjj . Based on the assumptions of the two
methods, it is expected that with strong correlations, CWoLa hunting will fail to find the
signal while ANODE should still be able to identify the presence of signal in the SR as well

– 16 –

Novel aspect of ANODE: can estimate backgrounds directly with L(x|Bdata; m∈SR)

ANODE: Results on LHCO R&D Dataset
Ben Nachman & DS 2001.04990



Can also consider performance on a feature set which is not 
independent of m.  We introduced artificial correlations just as proof 
of concept:

Figure 11. ROC (left) and SIC (right) curves in the signal region using the shifted dataset specified
by Eq. 5.1.

Figure 12. The same as Fig. 8, but for the shifted dataset. In particular, these plots compare the
background prediction from two direct density estimation techniques with the true background yield
after a threshold requirement R(x|m) > Rc.
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ANODE is robust while CWoLa completely fails!

ANODE: Results on LHCO R&D Dataset
Ben Nachman & DS 2001.04990

Figure 9. A comparison of the four features x between the SR and two nearby sidebands defined by
mjj œ [3.1, 3.3] TeV (lower sideband) and mjj œ [3.7, 3.9] TeV (upper sideband).

as estimate the background. To study this sensitivity in a controlled fashion, correlations
are introduced artificially. In practice, adding more features to x will inevitably result in
some dependence with mjj ; the artificial example here illustrates the challenges already in low
dimensions. New jet mass observables are created, which are linearly shifted:

mJ1,2 æ mJ1,2 + c mJJ , (5.1)

where c = 0.1 for this study. The resulting shifted lighter jet mass is presented in Fig. 10.
New ANODE and CWoLa models are trained using the shifted dataset and their perfor-

mance is quantified in Fig. 11. As expected, the fully supervised classifier is nearly the same as
Fig. 7. ANODE is still able to significantly enhance the signal, with a maximum significance
improvement near 4. While in principle ANODE could achieve the same classification accuracy
on the shifted and nominal datasets, the performance on the shifted examples is not as strong
as in Fig. 7. In practice the interpolation of pbackground into the SR is more challenging now
due to the linear correlations. This could possibly be overcome with improved training, better
choices of hyperparameters, or more sophisticated density estimation techniques.

By construction, there are now bigger di�erences between the SR and SB than between
the SR background and the SR signal. Therefore, the CWoLa hunting classifier is not able to

– 17 –



LHC Olympics 2020: Submission format

https://docs.google.com/forms/d/e/1FAIpQLScw323fa9qpLbdMvGtr2YeqcGTjE5Zm18-umIDiPldi_cWxVA/viewform



• 10 groups submitted results on box 1

• 4 of these groups also submitted results on boxes 2 & 3

• A number of additional groups could not finish the challenge in 
time but got results on the R&D dataset

• 7 of these groups gave talks about their methods and results at 
the ML4Jets2020 conference

Overview of submissions



Overview of submissions

People tried both supervised and unsupervised methods.

Methods used included

• variational RNNs for anti-QCD tagging

• density estimation

• biological neural network

• …

• Autoencoders

• CWoLa hunting

• PCA outlier detection

• LSTM

• CNN+BDT



Box 1
Signal: 834 events

Z’->XY; X,Y->qq
(same topology as R&D dataset)

mZ’ = 3823 GeV

mX = 732 GeV

mY = 378 GeV
3.8 TeV

378 GeV

732 GeV

We revealed the answer at the ML4Jets2020 conference 
in early January



Signal Events

Density estimation

N.B. no error bars here, but some 
methods reported them!  (e.g. TNT 

consistent within ~1.5 sigma)

Resonance 
Mass

Density estimation

Box 1

Density estimation



Signal Events

Density estimation

N.B. no error bars here, but some 
methods reported them!  (e.g. TNT 

consistent within ~1.5 sigma)

Resonance 
Mass

Density estimation

Box 1

Density estimation

1

Conditional density estimation for anomaly detection
George Stein, Uros Seljak, Biwei Dai, He Jia

M

⌘

�
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1

Conditional density estimation for anomaly detection
George Stein, Uros Seljak, Biwei Dai, He Jia

M

⌘

�

⌘

Used the ANODE method with a 
novel density estimator!

A clear winner emerged:



Signal Events

Density estimation

N.B. no error bars here, but some 
methods reported them!  (e.g. TNT 

consistent within ~1.5 sigma)

Resonance 
Mass

Density estimation

Box 1

Density estimation

Used a combination of autoencoders 
and CWoLa hunting

In second place:

Tag N’ Train

Tag N’ Train

Tag N’ Train



LHCO2020: Summer Games

Stay tuned for more on the LHCO 2020…

We will be organizing a 1-day mini-workshop on anomaly detection in 
Hamburg the Saturday before BOOST (July 18).

There the answers for Boxes 2 and 3 will be revealed.

We will also discuss plans for a community paper on new methods for 
anomaly detection and the LHCO2020.

Please come and join us!

https://indico.desy.de/indico/event/25341/

https://indico.desy.de/indico/event/25341/


Conclusions

These are exciting times for anomaly detection in HEP. 

Many new approaches making use of unsupervised ML are being 
developed by theorists and experimentalists. 

Model independent searches have a bright future at the LHC. Maybe 
this is how we will finally discover the new physics!

These methods also have potential applications beyond HEP. For 
example, ANODE is a completely general method for finding localized 
overdensities in high dimensional datasets. One can imagine many uses 
for such a method!



Thanks for your attention!
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point outlier, out of sample anomaly, 
“zero-background search”

collective outlier, population anomaly
“bump hunt”

easy hard

Anomaly Detection at the LHC

Background estimation is a key 
component of anomaly detection in HEP

In the broader ML field, there are two types of anomaly detection 



Sample definitions

• Background: QCD jets  
(pT: 800-900 GeV, |η|<1, anti-kt R=1) 

• Signals: 

• All-hadronic tops

• 400 GeV gluinos decaying via RPV

• We formed jet images in η and ϕ 
with a pixel resolution and intensity 
given by the calorimeter towers. 

Jet Images 12

Unrolled	slice	of	detector

Calorimeter	towers	as	pixels
Energy	depositions	as	intensity

Slide	from	B.	Nachman



Searching for NP with deep autoencoders
   Heimel et al 1808.08979;   Farina, Nakai & DS 1808.08992
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Searching for NP with deep autoencoders
   Heimel et al 1808.08979;   Farina, Nakai & DS 1808.08992
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Reconstruction Error

By training the autoencoder on a set of “normal” events, 
it learns to reconstruct them well.

Then when the autoencoder encounters 
“anomalous” events, its performance 
should be worse.

L =
1

N

NX

i=1

(xin
i � xout

i )2Loss function for autoencoder:

Can use reconstruction error 
as an anomaly threshold!

“reconstruction error”



Autoencoder architecture
Convolutional Autoencoder

13

128C3-MP2-128C3-MP2-128C3-32N-6N-32N-12800N-128C3-US2-128C3-
US2-1C3

128C3 : 128 filters with

              a 3x3 kernel

MP2 : max pooling with

          a 2x2 reduction factor

32N : a fully-connected layer

         with 32 neurons

Autoencoder architecture :

US2 : up sampling with

          a 2x2 expansion factor

Encoder Latent space Decoder
M. Ke, C. Lin, Q. Huang (2017)

128C3-MP2-128C3-MP2-128C3-32N-6N-32N-12800N-128C3-US2-128C3-US2-1C3

Our primary autoencoder used convolutional neural networks 
(CNNs) for encoding and decoding the jet images.

We also considered autoencoders based on PCA and simple DNNs. 

Many more architectures are possible.



Choosing the latent dimension

Should choose the latent dimension in an unsupervised manner 
(ie without optimizing on a specific signal) 

• d too large → autoencoder becomes identity transform

• d too small → autoencoder cannot learn all the features
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Figure 5: Left: Scree plot for PCA. Contribution to the variance of each principal component in
descending order. Right: average loss as a function of encoding space dimensions. Each dot corresponds
to the average of 5 independent training runs on the 100k training sample (apart from PCA, which is
deterministic and has no variance).

Figure 6: Dependence of performance of autoencoders in the weakly-supervised learning on number
of dimensions of latent space. The values of E10 and E100 for top jet signals are shown respectively in
the left and right panels. Each dot corresponds to the average of 5 independent training runs on the
100k training samples (apart from PCA, which is deterministic and has no variance).

coders presented in the paper.

Finally, let’s examine the wisdom of our choice by looking at the top signal for

example. Shown in Fig. 6 is E10 and E100 for the top signal (averaged over 5 training

runs) as a function of the latent dimension. This shows the same behavior as we saw

above – the performance of the autoencoders plateau around k = 6. This is encouraging

evidence for our unsupervised method of choosing the latent dimension based on PCA

and reconstruction loss.

11

idea: look for saturation point as d is increased



Choosing the latent dimension
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• d too large → autoencoder becomes identity transform

• d too small → autoencoder cannot learn all the features
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Performance: weakly supervised mode

Figure 3: Each panel represents the average of 100k jet images. Pixel intensity corresponds to the
total pT in each pixel. Upper row: original sample. Middle row: after reconstruction. Lower row:
pixel-wise squared error. Left column: QCD jets. Middle column: top jets. Right column: g̃ jets.

the more numerous low mass QCD jets at the expense of the rarer high mass QCD jets.

Meanwhile the CNN has learned information that is not as correlated with the mass,

e.g. details about the jet substructure.

In Table 1, we show the signal e�ciency at 90% and 99% background rejection

(which we refer to as E10 and E100 respectively). The values reported in each case are

the average over 5 independent training runs to ameliorate the intrinsic variance (apart

from PCA which is deterministic). We see that rejecting 99% of background will keep

more than 10% of the signals for both of the deep-learning-based autoencoders.

3.2 Choosing the latent dimension

Here we will explore the dependence of the autoencoder on the dimension of the latent

space. This is one of the most important choices to make in the design of an autoencoder

for anomaly detection. If the dimensionality is too low, the autoencoder is not able to

capture all the salient features of the training set. On the other hand, as the encoding

space gets larger, we get closer to the trivial representation. Hence we would like to find

8

QCD tops gluinos

Input

Output
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Fully unsupervised mode

Can also train on QCD background “contaminated” with a small 
fraction of signal.  This could be representative of actual data.
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Figure 8: The performance of autoencoders in the unsupervised learning case where the training set
is contaminated with anomalous events. We take top jet samples for anomalous events. The horizontal
axis denotes the ratio fcont of top jet samples in the whole training set with 100k samples. In the left and
right panels, the values of E10 and E100 for top jet signals are shown respectively. The gray, blue and
red curves denote the cases of the PCA, dense and convolutional autoencoders (each dot representing
the average of 5 runs).

Figure 9: ROC curves for CNN autoencoders trained on samples of QCD events contaminated with a
fraction fcont of gluino events.

Shown in fig. 9 is a similar comparison for contamination with gluinos. We see

that at fixed background rejection, the signal e�ciency decreases by 10-20% as the

contamination fraction of the training sample is increased from zero to 10%.

Just to emphasize how powerful this method potentially is, we see that with the

CNN autoencoder, even with 10% signal present in the training sample, the autoencoder

arrives at E100 ⇠ 0.1, so after this cut on reconstruction loss, we would end up with

S/B ⇠ O(1)!

Of course, without some way of estimating the background, this unsupervised method

14

(E10 = signal efficiency 
at 10% bg efficiency)

Performance of AE robust even up to 10% contamination!



Autoencoder with explicit decorrelationSciPost Physics Submission

Figure 5: Left: jet mass distributions from the image-based autoencoder applied to QCD
jets. The di↵erent lines show the full sample up to the 5% least QCD-like jets, defined by the
autoencoder loss function. Right: the same jet mass distributions, but for the QCD-trained
adversarial autoencoder network.

In the left panel of Fig. 5 we show jet mass distributions for QCD jets in slices of the
autoencoder loss function. The per-centile ranges from all QCD jets to the 5% least QCD-like
of all QCD jets. For the full jet sample we see the expected peak at small mj ⇡ 50 GeV with
a long tail extending beyond 300 GeV. For the least QCD-like jets in the pure QCD sample
a peak at mj ⇡ 200 GeV appears. This means that the cut on the autoencoder output
badly shapes the background and makes it signal-like. This defines the task of the adversarial
network: provide a smooth jet mass distribution for QCD jets, independent of the value of the
autoencoder loss function; or in other words, de-correlate the jet mass from the autoencoder.

Again, we use Keras [35] and Tensorflow [36] with the Adam [37] optimizer for the
combined adversarial network. The image-based autoencoder part of the network is described
in Fig. 2; the adversarial part consists of eight dense layers with 800, 400, 200, 100, 50, 25, 10,
and 12 units. We now train this network on 600,000 QCD jets. The output layer corresponds
to 10 pre-defined slices in the jet mass, binned such that they are populated by the same
number of QCD jets. On each side we add overflow bins which are not populated by QCD
jets. The task of the adversary is not to extract the exact jet mass value, but to determine the
probabilities for the jet mass to fall into each bin. This statistical interpretation requires a
multi-label cross entropy as the adversary loss function [24]. All layers use the ReLU activation
function except for the last layer, where a SoftMax activation function guarantees that all 12
probabilities sum to one. When training on the combined loss function, each epoch is split
into batches of size 128. For each batch we first train the autoencoder using the combined
loss function of Eq.(8) and then train the adversary with only the adversary loss function.
The size of the Lagrangian multiplier is chosen such that the two contributions to the loss
function are of similar size, i.e. it balances the de-correlation vs the discrimination power of
the network. For instance, the jet mass distribution for � = 5 · 10�4, shown in the right panel
of Fig. 5, indicates that the background shaping is indeed largely gone.

To study the interplay of the mass de-correlation with the performance of the adversarial

9

Heimel et al 1808.08979



Bump hunt with autoencoder

Figure 10: Jet mass histograms for QCD background and 400 GeV RPV gluinos, normalized to their
LO cross sections, before (left) and after (right) a cut on CNN autoencoder loss that rejects a factor of
1000 of the QCD background.

on CNN loss that reduce the QCD background by a factor of 10 (blue), 100 (orange),

and 1000 (green). The jet mass distribution is remarkably stable as we cut harder on

CNN loss. This makes it the superior autoencoder for doing a bump hunt in jet mass

for jet masses above ⇠ 300 GeV.

To illustrate the possibilities of searching for new physics in this way, by first “clean-

ing” the QCD background using the CNN autoencoder and then doing a bump hunt in

jet mass, we include Fig. 10. These are the jet mass histograms for QCD background

and 400 GeV gluinos, now normalized to the LO gluino and QCD cross sections, before

(left) and after (right) a cut on CNN autoencoder loss that removes a factor of 1000 of

the QCD background. Importantly, we have trained to autoencoder on a mixed sample

containing the expected fraction of gluino jets, corresponding to a contamination frac-

tion of 10�3. This would be representative of the actual data, if it really contained these

gluinos. We see that the S/B achievable here is ⇡ 25%. As can be seen clearly from

the histograms, this is an impressive improvement on the S/B before the cut (i.e. just

from the raw jet mass histogram), which is only ⇡ 4%. One could plausibly discover

new physics this way!

5 Discussion

In this paper, we have shown how autoencoders – machine-learning algorithms that learn

how to compress and decompress a sample of inputs – are potentially powerful new tools

for performing open-ended searches for new physics at the LHC. While autoencoders

have many real-world applications to anomaly detection, they have up till now not been
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Before AE cut After AE cut

Train directly on data that contains 400 GeV gluinos. 
Use the AE to clean away QCD jets. 
Enhance the significance of the bump hunt! (improve S/B by factor of ~6)

Could really discover new physics this way!


