LVLI Muon trigger

Hisaya Kurashige Kobe Univ.

- Status in RUN1
- Plan for RUN2 (Phase-0 upgrade)
 - LVL1 using Inner Statton
 - LVL1 using Tilecal
- Plan for Phase-1 Upgrade
 - LVL1using New Small Wheel
- Plan for Phase-2 Upgrade
 - LVL1 using MDT

p_[GeV]

 $L1_{\mu 20} = 6K[Hz] = 0.7 \times 10^{34}$

@ 2x10³⁴ , 25ns , 13TeV 6kHz x [2.0/0.7] x 1.4 x 1.6 = <u>38K[Hz]</u>

Need ~30% reduction

L1 Me	enu fo	or 2x1	034
L1 Item	Offline pT	Predicted Rate/kHz	
EM28H	33	28.0	
EM50	60	8.6	
2EM15H	2x20	8.8	25KF
MU20	25	25.6)
2MU11	2x13	4.3	
EM15H_MU10	20,12	2.0	
2EM8H_MU10	2x12,12	0.9	
EM8H_2MU6	12,2x8	0.6	
TAU60	150	10.2	
2TAU30_TAU40	100,80	9.4	
2TAU15I_3J15	2x40,50(jet)	8.7	
2TAU15I_EM15H_3J15	40,20,50(jet)	4.9	
TAU15I_MU10	40,15	4.6	
TAU20I_XE40_3J15	50,90,50(jet)	1.3	
J100	250	4.9	
4J20	Nx60	1.6	
J75_XE40	200,150	4.7	
XE60	190	1.2	
Others	topo?	~5	
Totals		90.0	

Origin of trigger

- Endcap trigger dominates
 - 6-7x higher in Endcap than in the barrel
- Out of time background
 - Additional background (+40%) In η = 1.0 – 1.5

 $\eta = 1.3 - 2.0$: MDT (precision R) + TGC (ϕ coordinate)

 $\eta = 2.0 - 2.7$: CSC (precision R and ϕ)

New LvII endcap μ in RUN2

Require Inner Station
TGC hits

	η	Φ
BW	1.05 ~ 2.4	2π
FI	1.3 ~ 1.9	2π
EI	0.9 ~ 1.3	missing part

Inner Station Coincidence

Another Idea: Using Tilecal

- Regions I<|η|<I.3 is not fully covered by EIL4 → high rate region
- Tilecal signal can be used for these region

Tilecal Muon signal

José Manoel de Seixas Ana Henriques

SL with Tilecal

- Current SL can receive trigger signals from Tile cal
 - Use spare optical inputs for Inner Station
- Detailed Study has just started
 - Noise profile
 - Coincidence Window
 - New modules
 - Receiver boards for Tile
 - Signal repeater/mixer for EI/FI

Phase-I Upgrade

- Higher Luminosity is expected for Upgrade
 - 3x10³⁴ for Phase-1 Upgrade
 - 5x10³⁴ for Phase-2 Upgrade

- Need more rate reduction trigger
- In addition, muon detectors in small wheel can not be operated in such high luminosity

New Small Wheel

New small wheels : solve problems @3x10³⁴ and 5x10³⁴

New precision tracker in NSW that works up to the ultimate luminosity, $5-7x10^{34}$, with some safety margin

Kill the fake trigger by requiring high quality (σ_{θ} ~ 1mrad) IP pointing segments In New small wheels (NSW)

Muon New Small Wheel

New LVL1 Muon scheme using NSW

$d\theta$ distribution and cut

 $d\theta$ cut is to be done in NSW electronics.

 $d\theta$ values of segments are not used in Phase-I, but in Phase-2 to improve pT resolution.

• Imrad resolution (5-bit : -15mrad to -15mrad, 1 mrad step)

dL_η and dL_φ distributions/cuts

- Check position matching between a track candidate from BW and a hit segment from NSW.
 - Deviation : dL (dL_ η ,dL_ ϕ)
 - $d\mathbf{L} = BW Rol SW (\eta, \phi)$
- dL cuts are to be done on SL. Track candidates with dL < 0.05 are selected.
- Required dL (dL_η,dL_φ) resolution is comparable with Rol size.
 - Rol size (d η ,d ϕ) are 0.02-0.03.
 - 10-bit data is enough for position info..

Offline muons (and MC) with pT > 20 GeV

Muons of LI_MU20

Segmentation and bit format

BW Trigger Sector boundary

Position info.

 \sim 5 times finer granularities than Rol size.

 ϕ/η : ~ 0.004 precision

8 tracks per NSW Sector (2 fibres per SW

Format of a track vector in NSW (24-bit/track)

Field:	TGC hit	MM hit	d $ heta$ (mrad)	ϕ index	<i>R</i> index	rsv
Num of bits:	2	2	5	6	8	1

Max. number of tracks per a NSW sector is 8.

Data Format from NSW to Sector Logic

Words (16-bit)	first byte		second byte
Word-0	comma		comma
Word-1	track-0		
Word-2			
Word-3	track-1		
Word-4	track-2		
Word-5			
Word-6	track-3		
Word-7	ID (4-bit) BCID (12-bit)		

Sector Logic Board for Phase-I

VME64x format, not compatible with Phase-2 upgrade

Phase-2 for BWTGC

- ASIC for PS-Board
 - LVDS Rx, variable delay, BCID, test pulse generator and Interface to GBT
- Module with FPGAs for Trigger/Readout
- LVL0 Trigger output, LVL1 Trigger input
 - Long LI-Buffer memory (no LO-Buffer) to cope with LI latency

REQUIREMENTS for improvement of pT resolution Barrel / Endcap : Imm spatial resolution and Imrad angular resolution

NSW / TGC+MDT Muon Track Trigger

Trigger rate distribution

Cut name	Rate
Inner_Seg>0	0.9089
dtheta cut	0.4511
dL cut	0.3055
beta cut	0.2156
Cut name	Efficiency

Cut name	Efficiency
Inner_Seg>0	0.9961
dtheta cut	0.9640
dL cut	0.9462
beta cut	0.9174

Summary

- Rate of LVL1 Endcap Muon Trigger is very high because of fake trigger by slow protons produced in/after Endcap Toroidal magnet
- Require before EC Toroid hits to reduce rate
 - Inner Station TGC for RUN2
 - Tilecal ? for RUN2
 - New Small Wheel for Phase-1 upgrade
- Better momentum resolution is studied
 - LVLI using MDT for Phase-2 upgrade

Intensive studies are under way in ATLAS Japan group