Possible implications of 750 GeV diphoton excess @ LHC

Pyungwon Ko (KIAS)

WRU Symposium 2016, "Interplay between LHC and flavor physics" KMI, Nagoya U, March 13–14 (2016)

Contents

- 750 GeV Diphoton excess at the LHC
- Model I : E6 motivated leptophobic U(1)' model
- Model II : Dark Higgs interpretation of diphoton excess
- Model III : Composite Models (??)
- Closing remarks

750 GeV diphoton excess at the LHC

Diphoton

Slides from Koji Terashi's talk

"Higgs-like" NWA scan \rightarrow local(global) 3.6(2.0) σ excess around 750 GeV

m_x [GeV]

- No obvious detector problems
- Event characteristics : consistent with mass sideband
- ~1.5 σ pull of photon energy resolution systematics

Diphoton

- 2D mass-width scan (mass = 200-2000 GeV, width =1-10%)
 - Local(global) 3.9(2.3)σ excess around 750 GeV

Best fit Γ/m ~ 6% (Γ ~ 45GeV)

 Compatible with Run 1 at 2.2(1.4)σ level for NWA (6% LWA) under gg hypothesis Slides from Jack Kai-Feng Chen's talk

Diphoton Resonances (cont.)

- * Statistical interpretation based on the m spectrum for the search of diphoton resonances.
- * Modeling in the interpretation:
 - Signal interpolation of MC signal (spin-2 assumed)
 - Background parametric fit to data.
- Excesses in two categories are not in the same mass window:
 - "wide excess": incompatible in terms of scale and resolutions.
 - Sensitivity is driven by the EB-EB category (90%).
- Maximum local significance: 2.6σ at 760 GeV

Slides from Jack Kai-Feng Chen's talk

Diphoton Resonances (cont.)

Including LEE (0.5 - 4.5 TeV; narrow width), global p-value $< 1.2\sigma$

Slides from Jack Kai-Feng Chen's talk

Well, 261 Citations So Far...

We are living in a very exciting era !

We are living in a very exciting era !

Not only for particle physics, But also for A.I. (Sedol Lee) 1: 3 (Alpha Go)

Match 4 - Google DeepMind Challenge Match: Lee Sedol vs AlphaGo GOOGLE DEEpMind Challenge Match 8 - 15 March 2016

Match 4 - Livestream 13th March 13:00 KST, 04:00 GMT -1 day (12th March) 20:00 PT, 23:00 ET

Pre-Match Commentary starting at 12:45 KST, 03:45 GMT -1day (12th March) 19:45 PT, 22:45 ET

Live from the Four Seasons Hotel Seoul!

Watch <u>AlphaGo</u> take on <u>Lee Sedol</u>, the world's top Go player, in the fourth match of the Google DeepMind challenge.

Properties of the diphoton excess

 \clubsuit Diphoton signal \rightarrow interpret as a resonance: spin-0 or 2

We consider a scalar boson in this talk

Cross section

$$\sigma(pp \rightarrow S)BR(S \rightarrow \gamma\gamma) \approx 3-10 \text{ fb}$$

✤Width

Best fit value by ATLAS : Γ~45 GeV

✓ Narrow width is also possible

Absence of 750 GeV resonance with other decay modes

Properties of the diphoton excess

final	σ at	$\sqrt{s} = 8 \mathrm{Te}$	V	implied bound or	n	
state f	observed	expected	ref.	$\Gamma(S \to f) / \Gamma(S \to \gamma \gamma)$	$\gamma)_{obs}$	
$\gamma\gamma$	< 1.5 fb	$< 1.1 \; {\rm fb}$	[6, 7]	$< 0.8 \ (r/5)$		
$e^+e^- + \mu^+\mu^-$	< 1.2 fb	$< 1.2 \; {\rm fb}$	[8]	$< 0.6 \ (r/5)$		
$\tau^+ \tau^-$	< 12 fb	$15 \mathrm{fb}$	[9]	< 6 (r/5)		
$Z\gamma$	< 4.0 fb	$< 3.4 {\rm ~fb}$	[10]	< 2 (r/5)	<i>r</i> =	$\sigma_{_{13TeV}}/\sigma_{_{8TeV}}$
ZZ	$< 12 {\rm ~fb}$	$< 20 {\rm ~fb}$	[11]	< 6 (r/5)		
Zh	$< 19 {\rm ~fb}$	$< 28 {\rm ~fb}$	[12]	$< 10 \ (r/5)$	Г	$/M \approx 0.06$
hh	$< 39 {\rm ~fb}$	$< 42 {\rm ~fb}$	[13]	$< 20 \ (r/5)$	•	
W^+W^-	$< 40 {\rm ~fb}$	$< 70~{\rm fb}$	[14, 15]	$< 20 \ (r/5)$		
$tar{t}$	$< 550 { m ~fb}$	-	[16]	$< 300 \ (r/5)$		
invisible	$< 0.8 { m ~pb}$	-	[17]	$< 400 \ (r/5)$		
$b\overline{b}$	$\lesssim 1{ m pb}$	$\lesssim 1\mathrm{pb}$	[18]	$< 500 \ (r/5)$		
jj	$\lesssim~2.5~{ m pb}$	-	[5]	$< 1300 \ (r/5)$		

From Table 1 of arXiv:1512.04933 (Franceschini et. al.)

Absence of 750 GeV resonance with other decay modes

One scenario: gluon fusion + diphoton decay via loop

Production: gluon fusion

Diphoton decay channel

It is not easy to get $\sigma(gg \rightarrow \Phi_{New})BR(\Phi_{New} \rightarrow \gamma\gamma) \sim 5 \text{ fb}$

Ex) Two Higgs doublet Model (Type-II) (Angelescu, Djouadi, Moreau arxiv:1512.0492)

 $\sigma(gg \rightarrow H) \sim 850 \text{ fb} \times cot^2 \beta$ $\sigma(gg \rightarrow A) \sim 850 \text{ fb} \times 2cot^2 \beta$

 $\mathsf{BR}(\mathsf{H} \rightarrow \gamma \gamma) \sim \mathsf{O}(10^{-5}) \qquad \mathsf{BR}(\mathsf{A} \rightarrow \gamma \gamma) \sim \mathsf{O}(10^{-5})$

We need exotic colored and/or charged particles

Let us discuss simple case of (SM) singlet scalar boson + exotic particles

Basic Questions

- Raison d'être of (fundamental?) singlet scalar and vector-like fermions ? Completely singlet particles ?
- Can we generate phi(750) decay width ~ 45 GeV without any conflict with the known constraints ?
- Yes, if phi(750) mainly decays into new particles
- Many examples : (i) Leptophobic U(1)' with fermions in the fundamental representation of E6, (ii) Dark U(1)' plus dark sector, Dark Higgs decay into a pair of Z'
- 750 GeV execss ~ U(1)' breaking scalar (Dark Higgs)

Related works

- arXiv:1512.07853, "A Higgcision study on the 750 GeV Di-photon Resonance and 125 GeV SM Higgs boson with the Higgs-Singlet Mixing", with Kingman Cheung, Jae Sik Lee, Po-Yan Tsung
- arXiv:1601.00586, "Diphoton Excess at 750 GeV in leptophobic U(1)' model inspired by E6 GUT", with Yuji Omura, Chaehyun Yu
- arXiv:1601.02490, "Dark sector shining through 750 GeV dark Higgs boson at the LHC", with Takaaki Nomura
- arXiv:1602.07214, "Confronting a New Three-loop Seesaw Model with the 750 GeV Diphoton Excess", with Takaaki Nomura, Hiroshi Okada, Yuta Orikasa
- arXiv:1602.08816, "ADMonium: Asymmetric Dark Matter Bound State", with Xiao-Jun Bi, Zhaofeng Kang, Jinmian Li, Tianjun Li
- Work in preparation with Chaehyun Yu and T.C. Yuan, composite models

Related works

- arXiv:1512.07853, "A Higgcision study on the 750 GeV Di-photon Resonance and 125 GeV SM Higgs boson with the Higgs-Singlet Mixing", with Kingman Cheung, Jae Sik Lee, Po-Yan Tseng
- arXiv:1601.00586, "Diphoton Excess at 750 GeV in leptophobic U(1)' model inspired by E6 GUT", with Yuji Omura, Chaehyun Yu
- arXiv:1601.02490, "Dark sector shining through 750 GeV dark Higgs boson at the LHC", with Takaaki Nomura
- arXiv:1602.07214, "Confronting a New Three-loop Seesaw Model with the 750 GeV Diphoton Excess", with Takaaki Nomura, Hiroshi Okada, Yuta Orikasa
- arXiv:1602.08816, "ADMonium: Asymmetric Dark Matter Bound State", with Xiao-Jun Bi, Zhaofeng Kang, Jinmian Li, Tianjun Li
- Work in preparation with Chaehyun Yu and T.C. Yuan, composite models (?)

E6 motivated leptophobic U(1)' model

arXiv:1601.00586 with Yuji Omura, Chaehyun Yu

See also the poster presentation by Yuji Omura today

2HDM with U(1)н gauge sym

- 2HDM: one of the popular extensions of the SM Higgs sector
- Yukawa's and mass matrices cannot be diagonalized simultaneously —> neutral Higgs mediated FCNC problem
- Natural Flavor Conservation : usually in terms of Z₂ (Glashow and Weinberg, 1977)

Natural Flavor Conservation (Glashow and Weinberg, 1977)

- Fermions of the same electric charge get their masses from the same Higgs doublet [Glashow and Weinberg, PRD (1977)] NFC
- Impose a discrete Z2 sym, and assign different Z2 parity to H1 and H2
- This Z2 is softly broken to avoid the domain wall problem

However

- The discrete Z₂ seems to be rather ad hoc, and its origin and the reason for its soft breaking are not clear
- We implement the discrete Z₂ into a continuos local U(1) Higgs flavor sym under which H₁ and H₂ are charged differently [Ko, Omura, Yu PLB (2012)]
- This simple idea opens a new window for the multi-Higgs doublet models, which was not considered before

Type-II 2HDM with U(1)H gauge symmetry

Ko, Omura, Yu: arXiv:1204.4588 [hep-ph]

Table 1: Matter contents in U(1)' model inspired by E₆ GUTs. Here, *i* denotes the generation index: i = 1, 2, 3.

Fields	SU(3)	SU(2)	$\mathrm{U}(1)_Y$	U(1)'	Z_2^{ex}
Q^i	3	2	1/6	-1/3	
u_R^i	3	1	2/3	2/3	
d_R^i	3	1	-1/3	-1/3	
L_i	1	2	-1/2	0	+
e_R^i	1	1	-1	0	
n_R^i	1	1	0	1	
H_2	1	2	-1/2	0	
H_1	1	2	-1/2	-1	+
Φ	1	1	0	-1	
D_L^i	3	1	-1/3	2/3	
D_R^i	3	1	-1/3	-1/3	
\widetilde{H}^i_L	1	2	-1/2	0	_
\widetilde{H}^i_R	1	2	-1/2	-1	
N_L^i	1	1	0	-1	

Basic Ingredients

- New vectorlike fermions which are chiral under new U(1)': non-decoupling effects on X->gg, gam gam
- Diphoton at 750 GeV = Higgs boson from U(1)' sym breaking, mostly a SM singlet scalar
- All the masses from dynamical (Higgs) mechanism
- New decay modes to enhance the total decay rate

$Z_2: (H_1, H_2) \to (+H_1, -H_2).$

TABLE I: Assignment of Z_2 parities to the SM fermions and Higgs doublets.

Type	H_1	H_2	U_R	D_R	E_R	N_R	Q_L, L
Ι	+	_	+	+	+	+	+
II	+	_	+		_	+	+
III	+	_	+	+	_		+
IV	+		+	_	+		+

 $V(H_{1}, H_{2}) = m_{1}^{2} H_{1}^{\dagger} H_{1} + m_{2}^{2} H_{2}^{\dagger} H_{2} + \frac{\lambda_{1}}{2} (H_{1}^{\dagger} H_{1})^{2} \qquad \Delta V = m_{\Phi}^{2} \Phi^{\dagger} \Phi + \frac{\Lambda_{\Phi}}{2} (\Phi^{\dagger} \Phi)^{2} + (\mu H_{1}^{\dagger} H_{2} \Phi) + \text{h.c.}) + \frac{\lambda_{2}}{2} (H_{2}^{\dagger} H_{2})^{2} + \lambda_{3} H_{1}^{\dagger} H_{1} H_{2}^{\dagger} H_{2} + \lambda_{4} H_{1}^{\dagger} H_{2} H_{2}^{\dagger} H_{1}. (4) \qquad + \mu_{1} H_{1}^{\dagger} H_{1} \Phi^{\dagger} \Phi + \mu_{2} H_{2}^{\dagger} H_{2} \Phi^{\dagger} \Phi, \qquad (5)$ Soft Z2 breaking is replaced by spontaneous U(1) Higgs gauge sym breaking

Type-I Extensions

Models are anomaly free without extra chiral fermions

TABLE II: Charge assignments of an anomaly-free $U(1)_H$ in the Type-I 2HDM.

Type	U_R	D_R	Q_L	L	E_R	N_R	H_1
$U(1)_H$ charge	u	d	$\frac{(u+d)}{2}$	$\frac{-3(u+d)}{2}$	-(2u+d)	-(u+2d)	$\frac{(u-d)}{2}$
$h_2 \neq 0$	0	0	0	0	0	0	0
$U(1)_{B-L}$	1/3	1/3	1/3	-1	-1	-1	0
$U(1)_R$	1	-1	0	0	-1	1	1
$U(1)_Y$	2/3	-1/3	1/6	-1/2	-1	0	1/2

See arXiv:1309.7256 for Higgs data analysis, arXiv:1405.2138 for DM (Ko,Omura,Yu)

A Type-II Extension has all the necessary ingredients

Table 1: Matter contents in U(1)' model inspired by E₆ GUTs. Here, *i* denotes the generation index: i = 1, 2, 3.

Fields	SU(3)	SU(2)	$\mathrm{U}(1)_Y$	U(1)'	$Z_2^{\rm ex}$
Q^i	3	2	1/6	-1/3	
u_R^i	3	1	2/3	2/3	
d_R^i	3	1	-1/3	-1/3	
L_i	1	2	-1/2	0	+
e_R^i	1	1	-1	0	
n_R^i	1	1	0	1	
H_2	1	2	-1/2	0	
H_1	1	2	-1/2	-1	+
Φ	1	1	0	-1	
D_L^i	3	1	-1/3	2/3	
D_R^i	3	1	-1/3	-1/3	
\widetilde{H}^i_L	1	2	-1/2	0	—
\widetilde{H}^i_R	1	2	-1/2	-1	
N_L^i	1	1	0	-1	

Fermions : 27 of E6 (!!!) Scalar Bosons : 2 Doublets + 1 Singlet

Yukawa couplings

The U(1)'-symmetric Yukawa couplings in our model are given by

$$V_{y} = y_{ij}^{u} \overline{u_{R}^{j}} H_{1}^{\dagger} i \sigma_{2} Q^{i} + y_{ij}^{d} \overline{d_{R}^{j}} H_{2} Q^{i} + y_{ij}^{e} \overline{e_{R}^{j}} H_{2} L^{i} + y_{ij}^{n} \overline{n_{R}^{j}} H_{1}^{\dagger} i \sigma_{2} L^{i} + H.c.,$$
(16)

where σ_2 is the Pauli matrix. The Yukawa couplings to generate the mass terms for the extra particles are

$$V^{\text{ex}} = y_{ij}^{D} \overline{D_{R}^{j}} \Phi D_{L}^{i} + y_{ij}^{H} \overline{\widetilde{H}_{R}^{j}} \Phi \widetilde{H}_{L}^{i} + y_{IJ}^{N} \overline{N_{L}^{c}} H_{1}^{\dagger} i \sigma_{2} \widetilde{H}_{L}^{i} + y_{IJ}^{\prime N} \overline{\widetilde{H}_{R}^{i}} H_{2} N_{L}^{j} + H.c.$$
 (17)

Complex Scalar DM

One can introduce new Z_2^{ex} -odd scalar field X with the $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_H$ quantum numbers equal to (1, 1, 0; -1). Then the gauge-invariant Lagrangian involving X is given by

$$\mathcal{L}_{X} = D_{\mu}X^{\dagger}D^{\mu}X - (m_{X0}^{2} + \lambda_{H_{1}X}H_{1}^{\dagger}H_{1} + \lambda_{H_{2}X}H_{2}^{\dagger}H_{2})X^{\dagger}X - \lambda_{X}(X^{\dagger}X)^{2} - \left(\lambda_{\Phi X}^{''}(\Phi^{\dagger}X)^{2} + H.c.\right) - \lambda_{\Phi X}\Phi^{\dagger}\Phi X^{\dagger}X - \lambda_{\Phi X}^{'}|\Phi^{\dagger}X|^{2} - \left(y_{dX}^{D}\overline{d_{R}}D_{L}X + y_{LX}^{\tilde{H}}\overline{L}\widetilde{H}_{R}X^{\dagger} + H.c.\right)$$
(18)

125 GeV Higgs Data

Qualitatively different from the ordinary Type-II 2HDM arXiv:1502.00262 (Ko, Omura, Yu)

750 GeV Diphoton Excess

Ko, Omura, Yu, arXiv:1601.00586

Figure 2: y vs. invisible decay width of h_{Φ} (GeV) in the fermionic DM scenario (left) and scalar DM scenario (right). The vector-like fermion mass is between 500 GeV and 1 TeV on the cyan and pink bands. The dark matter masses are 70 GeV in the both cases.

Constraints

final	σ at	$\sqrt{s} = 8 \mathrm{Te}^3$	V	implied bound on
state f	observed	expected	ref.	$\Gamma(S \to f)/\Gamma(S \to \gamma \gamma)_{\rm obs}$
$\gamma\gamma$	$< 1.5 { m ~fb}$	< 1.1 fb	[6, 7]	< 0.8 (r/5)
$e^+e^-+\mu^+\mu^-$	< 1.2 fb	< 1.2 fb	[8]	< 0.6 (r/5)
$\tau^+\tau^-$	< 12 fb	15 fb	[9]	< 6 (r/5)
$Z\gamma$	$< 4.0 { m ~fb}$	< 3.4 fb	[10]	< 2 (r/5)
ZZ	< 12 fb	< 20 fb	[11]	< 6 (r/5)
Zh	< 19 fb	< 28 fb	[12]	$< 10 \ (r/5)$
hh	< 39 fb	< 42 fb	[13]	$< 20 \ (r/5)$
W^+W^-	< 40 fb	$< 70 {\rm ~fb}$	[14, 15]	$< 20 \ (r/5)$
$t\bar{t}$	< 550 fb	-	[16]	$< 300 \ (r/5)$
invisible	< 0.8 pb	-	[17]	$< 400 \ (r/5)$
$b\bar{b}$	$\lesssim 1 \mathrm{pb}$	$\lesssim 1 \mathrm{pb}$	[18]	$< 500 \ (r/5)$
jj	$\lesssim~2.5~{ m pb}$	-	[5]	$< 1300 \ (r/5)$

Rescaled Run I limits

[Franceschini et al, 1512.04933]

- Most can be evaded
- Monojet + missing ET ??

Key Aspects of the Model

- Extra fermions are chiral under U(1)', and vectorlike under the SM gauge group : this is the consequence of gauge anomaly cancellation (27 rep. of E6 group)
- U(1)'-breaking scalar produces a new singlet-like scalar h_phi ~ 750 GeV scalar boson
- Decay channels of 750 GeV are determined by gauge symmetry of the underlying Type-II 2HDM with U(1)' Higgs gauge symmetry (hh, Hh, HH, Z'Z', DM DM etc.)

Conclusion

- Type II 2HDM + U(1) Higgs gauge symmetry : leptophobic U(1)' derived from E6
- Can accommodate the 750 GeV diphoton excess at qualitative level. Quantitatively ?? (Work in progress)
- A few more different models within the same ingredients are being studied now : Stay tuned
- A new playground for new gauge models (including DM)

Flavor dependent U(1)'

- One can consider flavor dependent U(1)', assuming only the 3rd generation for example feels U(1)'
- Such model in fact was constructed by Yuji Omura, Chaehyun Yu and myself in the context of Top FBA at the Tevatron [Origin of nonMFV = flavor dep. U(1)']
- Can accommodate B->D(*) tau nu anomaly too
- arXiv:1108.0350, 1108.4005, 1205.0407, 1212.4607

Dark Higgs shines through 750 GeV Dark Higgs Boson at the LHC

arXiv:1601.02490, with T. Nomura

Disclaimer

In this part, "Dark sector" means that it carries dark gauge charges.

Does not mean that it is made of SM singlets.

Dark Sector Shining through 750GeV Dark Higgs @ LHC

(arXiv:1601.02490 with Takaaki Nomura)

- Raison d'être of (fundamental?) singlet scalar and vector-like fermions ? Completely singlet particles ?
- Can we generate phi(750) decay width ~ 45 GeV without any conflict with the known constraints ?
- Yes, if phi(750) mainly decays into new particles
- Here we consider phi(750) decay into dark photons, assuming phi(750) is a dark Higgs boson

- SM+U(1)_X + New fermions and scalars with U(1)_X charge
- ✤New fermions are VL under SM but chiral under U(1)_X
- $\mbox{\scriptsize \ensuremath{\mathsf{R}}}$ Relevant couplings are related to new gauge coupling g_X
- ✤750 GeV scalar can decay into new massive gauge boson (Z')
- DM candidate is contained in a model

- Every fR in the SM has its dark partner, FL with the same SM quantum #'s and dark gauge charge
- FL fR X : gauge invariant, due to a new complex scalar
 X which can make DM candidate, if <X>=0

Model : Local $U(1)_X$ model with exotic particles

Contents in dark sector(anomaly free)

New Lagrangian

(P.Ko, T.N. arXiv:1601.02490)

	Fermions									ar
	E_L	E_{R}	N_L	N_R	U_L	U_{R}	D_L	D_R	Φ	X
SU(3)	1	1	1	1	3	3	3	3	1	1
SU(2)	1	1	1	1	1	1	1	1	1	1
$U(1)_Y$	-1	-1	0	0	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{-1}{3}$	$\frac{-1}{3}$	0	0
$\mathrm{U}(1)_X$	a	-b	-a	b	-a	b	a	-b	a + b	a

(3 generations of fermions)

X,N : DM candidate

$$\begin{split} L^{Y} &= y^{E} \overline{E}_{L} E_{R} \Phi + y^{N} \overline{N}_{L} N_{R} \Phi^{*} + y^{U} \overline{U}_{L} U_{R} \Phi^{*} + y^{D} \overline{D}_{L} D_{R} \Phi \\ &+ y^{Ee} \overline{E}_{L} e_{R} X + y^{Uu} \overline{U}_{L} u_{R} X^{*} + y^{Dd} \overline{D}_{L} d_{R} X + h.c. \end{split}$$

$$V = \mu^{2} |H|^{2} + \lambda |H|^{4} + \mu_{\Phi}^{2} |\Phi|^{2} + \mu_{X}^{2} |X|^{2} + \lambda_{\Phi} |\Phi|^{4} + \lambda_{X} |X|^{4} + \lambda_{H\Phi} |H|^{2} |\Phi|^{2} + \lambda_{HX} |H|^{2} |X|^{2} + \lambda_{X\Phi} |X|^{2} |\Phi|^{2}$$

Model: local U(1)_X model with exotic particlesContents in dark sector (anomaly free)(P.Ko, T.N. arXiv:1601.02490)

	Fermions									Scalar	
	$E_L E_R N_L N_R U_L U_R D_L D_R$							Φ	X		
SU(3)	1	1	1	1	3	3	3	3	1	1	
SU(2)	1	1	1	1	1	1	1	1	1	1	
$U(1)_Y$	-1	-1	0	0	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{-1}{3}$	$\frac{-1}{3}$	0	0	
$\mathrm{U}(1)_X$	a	-b	-a	b	-a	\boldsymbol{b}	a	-b	a + b	a	

(3 generations of fermions)

New Lagrangian

X,N : DM candidate

$$L^{Y} = y^{E}\overline{E}_{L}E_{R}\Phi + y^{N}\overline{N}_{L}N_{R}\Phi^{*} + y^{U}\overline{U}_{L}U_{R}\Phi^{*} + y^{D}\overline{D}_{L}D_{R}\Phi$$

Giving mass for new fermions + gg fusion and yy decay of \Phi + $y^{Ee}\overline{E}_L e_R X + y^{Uu}\overline{U}_L u_R X^* + y^{Dd}\overline{D}_L d_R X + h.c.$

$$V = \mu^{2} |H|^{2} + \lambda |H|^{4} + \mu_{\Phi}^{2} |\Phi|^{2} + \mu_{X}^{2} |X|^{2} + \lambda_{\Phi} |\Phi|^{4} + \lambda_{X} |X|^{4} + \lambda_{H\Phi} |H|^{2} |\Phi|^{2} + \lambda_{HX} |H|^{2} |X|^{2} + \lambda_{X\Phi} |X|^{2} |\Phi|^{2}$$

Model: local U(1)_X model with exotic particlesContents in dark sector(anomaly free)(P.Ko, T.N. arXiv:1601.02490)

Fermions Scalar E_{R} E_L U_L U_{R} D_L D_R Φ X N_L N_R SU(3)3 3 3 1 1 1 1 3 1 1 SU(2)1 1 1 1 1 1 1 1 1 1 $\frac{-1}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{-1}{3}$ $\mathrm{U}(1)_Y$ -1-10 0 0 0 b $\mathrm{U}(1)_X$ -bb -ba+ba-a \boldsymbol{a} -a \boldsymbol{a}

(3 generations of fermions)

New Lagrangian

X,N : DM candidate

of Φ

$$L^{Y} = y^{E} \overline{E}_{L} E_{R} \Phi + y^{N} \overline{N}_{L} N_{R} \Phi^{*} + y^{U} \overline{U}_{L} U_{R} \Phi^{*} + y^{D} \overline{D}_{L} D_{R} \Phi$$

Giving mass for new fermions + gg fusion and $\gamma\gamma$ decay

$$+ y^{Ee} \overline{E}_{L} e_{R} X + y^{Uu} \overline{U}_{L} u_{R} X^{*} + y^{Dd} \overline{D}_{L} d_{R} X + h.c.$$

 $V = \mu^{2} |H|^{2} + \lambda |H|^{4} + \mu_{\Phi}^{2} |\Phi|^{2} + \mu_{X}^{2} |X|^{2} \qquad F \to X f_{SM}$ $+ \lambda_{\Phi} |\Phi|^{4} + \lambda_{X} |X|^{4} + \lambda_{H\Phi} |H|^{2} |\Phi|^{2} + \lambda_{HX} |H|^{2} |X|^{2} + \lambda_{X\Phi} |X|^{2} |\Phi|^{2}$

DM Stability/Longevity

- Accidental Z₂ symmetry after U(1)x symmetry breaking
- (FL, FR, X): Z2-odd, whereas the rest fields are Z2-even
- Have to be careful about operators that break this Z₂ symmetry, making X decay at (non)renormalizable level
- $X^{\dagger} \Phi^n$: gauge invariant operator that has to be forbidden
- a/(a+b)=n for gauge invariance : suitable choice of a, b can make a/(a+b) non-integer (absolutely stable), or make n very large (long-lived X). We choose a~b~1 for simplicity

Gauge Symmetry breaking and Z' *** VEVs of scalar fields** $\langle H \rangle = \frac{1}{\sqrt{2}}v, \quad \langle \Phi \rangle = \frac{1}{\sqrt{2}}v_{\phi}$ $v \approx \sqrt{\frac{-\mu^{2}}{\lambda}}, \quad v_{\phi} \approx \sqrt{\frac{-\mu_{\Phi}^{2}}{\lambda_{\Phi}}}$ $\Phi = (v_{\phi} + \phi + iG_{X})/\sqrt{2}$ U(1)_X is broken by <Φ> Massive Z' We assume H-Φ mixing is negligible

* Masses of Z' and new fermions

Z' decays through small Z-Z' mixing

BRs of Z'

Gluon fusion and decay modes of ϕ

Gluon fusion and diphoton decay of φ via new fermion loop

$$\mathbf{gg} \to \mathbf{\Phi} \qquad L_{\phi gg} = \frac{\alpha_s}{8\pi} \left(\sum_{F=U,D} \frac{(a+b)\sqrt{2}g_X}{m_{Z'}} A_{1/2}(\tau_F) \right) \phi G^{a\mu\nu} G^a_{\mu\nu}$$

Decay widths

Gluon fusion and decay modes of $\boldsymbol{\phi}$

Gluon fusion and diphoton decay of φ via new fermion loop

$$\mathbf{gg} \to \mathbf{\Phi} \qquad L_{\phi gg} = \frac{\alpha_s}{8\pi} \left(\sum_{F=U,D} \frac{(a+b)\sqrt{2}g_X}{m_{Z'}} A_{1/2}(\tau_F) \right) \phi G^{a\mu\nu} G^a_{\mu\nu}$$

Decay widths

* ~5 fb cross section with $g_x=0.3\sim0.5$ and $m_{z'}=120\sim360$ GeV

Decay width is relatively large: O(10~50) GeV

Discussion: Cross section of ϕ production

- Large cross section of O(10) pb
- ~1/5 for 8 TeV case
- No direct constraints for

$$pp \rightarrow \phi \rightarrow Z'Z' \rightarrow 4f_{SM}$$

• Z' width is very narrow

 $\Gamma/M < 10^{-6}$ due to small Z-Z' mixing

{M_{U,D}, M_{E,N},M_X, $\lambda_{X\Phi}$ } = {800 GeV, 400 GeV, 350 GeV, 0.075} (a~b~1)

N is subdominant in our analysis

Digress on muon (g-2)

- For mX = 350 GeV and mEi = 400 GeV, we can account for the deficit in the a_{μ} = 8 \times 10^{(-10), if y^Ei_{\mu} ~ 2 3
- However, in this case, the annihilation cross section for X is too large, and X cannot be the main component of the DM in the present universe
- So we don't pursue this possibility any further

Summary with this new DM model

- A new viable model for DM with rich dark sector
- Interesting in its own, if 750 GeV excess disappears
- Can accommodate a large width with decay into Z'Z'
- Rich collider phenomenology, since dark fermions are charged under the SM gauge charges
- No strong constraints from DM (in)direct detection expt's
- Indirect signatures and SU(2) L charged case under study

Composite Models

Work in progress with Chaehyun Yu, T.C. Yuan (Academia Sinica)

Basic assumptions

- New QCD-like confining gauge force described by SU(Nh)
- New Q's and L's charged under SU(Nh)
- SU(2) doublets or singlets
- Q,L : Heavy fermions (>> new confining scale)
- Light h-glueball : decay into SM particles through loop
- 750 GeV excess ~ etaq

Ex : Doublet with Qe=2/3

$$\sigma(gg \to \eta_Q \to \gamma\gamma) = \frac{C_{gg}}{sm_{\eta_Q}\Gamma_{\text{tot}}} \Gamma[\eta_Q \to gg]\Gamma[\eta_Q \to \gamma\gamma],$$

$$\begin{split} \Gamma_{\gamma\gamma} &= \frac{\alpha^2 N_c N_h e_Q^4}{m_Q^2} \left| R_{1S}(0) \right|^2, \\ \Gamma_{\gamma Z} &= \frac{\alpha^2 N_c N_h e_Q^2 (1 + 4e_Q x_w)^2 (4 - r_Z)}{32 m_Q^2 x_w (1 - x_w)} \left| R_{1S}(0) \right|^2, \\ \Gamma_{ZZ} &= \frac{\alpha^2 N_c N_h (1 - r_Z)^{3/2}}{16 x_w^2 (1 - x_w)^2 m_Q^2 (2 - r_Z)^2} \left(1 + 4e_Q x_w + 8e_Q^2 x_W^2 \right)^2 \left| R_{1S}(0) \right|^2, \\ \Gamma_{WW} &= \frac{\alpha^2 N_c N_h (1 - r_W)^{3/2}}{8 x_w^2 m_Q^2 (2 - r_W)^2} \left| R_{1S}(0) \right|^2, \\ \Gamma_{gg} &= \frac{C_F N_h \alpha_s^2}{2 m_Q^2} \left| R_{1S}(0) \right|^2, \\ \Gamma_{ghgh} &= \frac{C_h N_c \alpha_h^2}{2 m_Q^2} \left| R_{1S}(0) \right|^2, \end{split}$$

$$\left|R_{1S}(0)\right|^{2} = m_{Q}\left\langle\frac{dV}{dr}\right\rangle = 4\left(C_{h}\alpha_{h}\frac{m_{Q}}{2}\right)^{3}$$

gh's will hadronize into a h-gleball, eventually decays into SM particles through loop diagrams (in progress)

In the numerical analysis, we use

$$\left|R_{1S}(0)\right|^{2} = m_{Q}\left\langle\frac{dV}{dr}\right\rangle = 4\left(C_{h}\alpha_{h}\frac{m_{Q}}{2}\right)^{3}$$

$$N_c = 3,$$

$$N_h = 3, 4, 5,$$

$$m_{\eta_Q} = 750 \text{ GeV},$$

$$m_Q = 375 \text{ GeV},$$

$$\alpha = \frac{1}{128},$$

$$\alpha_s = 0.12,$$

$$e_Q = \frac{2}{3}.$$

FIG. 2. (a) The cross section for $pp \to \eta_Q \to \gamma\gamma$ at $\sqrt{s} = 13$ TeV in unit of fb VS Γ_{tot} in unit of GeV. (b) The cross section in unit of fb as a function of α_h , and (c) Γ_{tot} in unit of GeV as a function of α_h .

FIG. 1. Branching ratios of η_Q decays as a function of α_h for $N_h = 3, 4, \text{ and } 5$, respectively.

Closing Remarks

- Diphoton excess needs to be confirmed this/next year
- If confirmed, this may be a signal of new gauge force and its Higgs
- The width of the resonance is a crucial information for particle physics model buildings
- Not easy to have ~45 GeV width without conflict with the present constraints on other decay channels
- The easiest way is to allow new decay channels which are less constrained

Backup

Constraints on dark photon

Jaeckel and Spannowsky, arXiv:1212.3620 [hep-ph]

Figure 1: 95% exclusion limits on the kinetic mixing parameter χ_{γ} from the ATLAS (dashed) and CMS (solid) Z' searches. The thin lines correspond to the $\mu^+\mu^-$ channel only, while the thick lines result from a combination of the $\mu^+\mu^-$ and e^+e^- channels.

Figure 2: Combination of the new LHC limits with a range of other constraints on hidden photons (see refs. [19,20] for details). The new "LHC" region is marked in orange and extends the existing bounds to a previously uncovered range of high masses. Note that the limits are with respect to the hypercharge mixing parameter χ_Y . For small hidden photon masses the kinetic mixing parameter with the ordinary photon is related to χ_Y through $\chi = \cos(\theta_W)\chi_Y$.