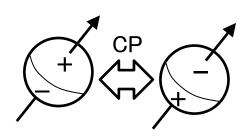
Recent results on tau decays at Belle experiment K.Hayasaka (KMI, Nagoya University)

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

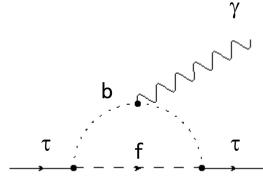
Topics of tau physics at Belle

- New physics search
 - tau LFV
 - tau CPV
- SM precise measurement
 - BF measurement of hadronic decays
 - evaluation of the spectrum of the hadronic current
 - 2nd class current search
 - measurement of Vus
- Tau property measurement
 - tau mass measurement
 - tau lifetime measurement
 - tau EDM measurement
 - tau Michel parameter measurement

Topics of tau physics at Belle


- New physics search
 - tau LFV
 - tau CPV
- SM precise measurement
 - BF measurement of hadronic decays
 - evaluation of the spectrum of the hadronic current
 - 2nd class current search
 - measurement of Vus
- Tau property measurement
 - tau mass measurement
 - tau lifetime measurement _____ Today's topics
 - tau EDM measurement
 - tau Michel parameter measurement

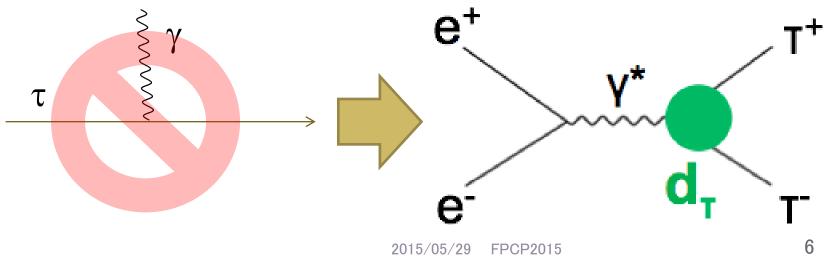
TAU EDM MEASUREMENT



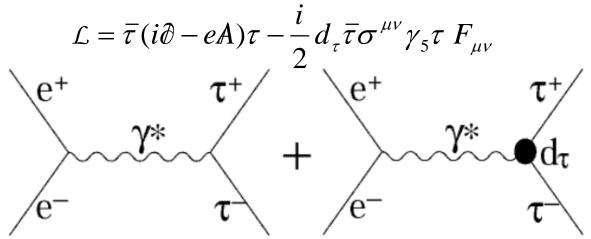
Introduction for tau EDM (1)

 EDM violates CP since it signifies a charge asymmetry along spin direction.

- Standard model prediction: $O(10^{-37})$ ecm
 - Sizable EDM of tau is a signal of New Physics
 - Through a loop diagram with new particles, EDM can appear.
- Current upper limit: Belle: 29.5fb⁻¹ PLB 551(2003)16 $-2.2 < \text{Re}(d_{\tau}) \times 10^{17} < 4.5 \text{ (ecm)}$ $-2.5 < \text{Im}(d_{\tau}) \times 10^{17} < 0.8 \text{ (ecm)}$



$$\mathcal{L}_{\rm EDM} = -\frac{i}{2} d_{\tau} \bar{\tau} \sigma^{\mu\nu} \gamma_5 \tau F_{\mu\nu}$$


Introduction for tau EDM (2)

- Due to the short life time of tau (~90 μ m), a measurement via radiative process is difficult, differently from that for muon.
- In a B-factory, through the tau-pair production vertex, tau EDM can be evaluated.

Effective lagrangian and Spin density matrix element

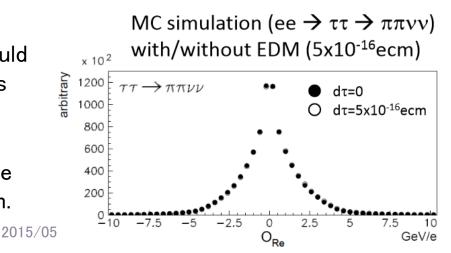
Effective Lagrangian with EDM for $e^+e^- \rightarrow \tau^+\tau^-$

Squared spin density matrix

$$\mathcal{M}_{prod}^{2} = \mathcal{M}_{SM}^{2} + \operatorname{Re}(d_{\tau})\mathcal{M}_{Re}^{2} + \operatorname{Im}(d_{\tau})\mathcal{M}_{Im}^{2} + |d_{\tau}|^{2} \mathcal{M}_{SM}^{2}$$

Through the interference term, EDM effect will be seen. $\mathcal{M}_{Re}^2 \sim (\vec{S}_+ \times \vec{S}_-)\vec{k}, (\vec{S}_+ \times \vec{S}_-)\vec{p}$: CP-odd, T-odd \vec{S}_{\pm} : spin vector of τ^{\pm} $\mathcal{M}_{Im}^2 \sim (\vec{S}_+ - \vec{S}_-)\vec{k}, (\vec{S}_+ - \vec{S}_-)\vec{p}$: CP-odd, T-even \vec{p} : momentum for τ^+ $\mathcal{M}_{Im}^2 \sim (\vec{S}_+ - \vec{S}_-)\vec{k}, (\vec{S}_+ - \vec{S}_-)\vec{p}$: CP-odd, T-even \vec{p} : momentum for beam e⁺ 7

Optimal observable method


• Optimal observable (OO) method is more sensitive than simple cross section measurement: $\mathcal{M}_{Re}^2 \sim (\vec{s}_+ \times \vec{s}_-) \vec{k}, (\vec{s}_+ \times \vec{s}_-) \vec{p}$

$$egin{aligned} \mathcal{O}_{Re} &= rac{\mathcal{M}_{Re}^2}{\mathcal{M}_{SM}^2} & \langle \mathcal{O}_{Re}
angle \propto \int \mathcal{O}_{Re} d\sigma \propto \int \mathcal{O}_{Re} \mathcal{M}_{prod}^2 d\phi \ &= \int \mathcal{M}_{Re}^2 d\phi + Re(d_ au) \int rac{(\mathcal{M}_{Re}^2)^2}{\mathcal{M}_{SM}^2} d\phi \end{aligned}$$

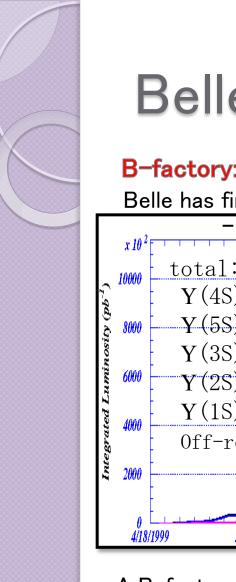
b

Calculate OO event by event and take the average of them, that is linear function of EDM. Here, parameters, a and b, should be evaluated using MC samples having various size of EDM.

Similar formula of $Im(d_{\tau})$ can be obtained by replacing Re by Im.

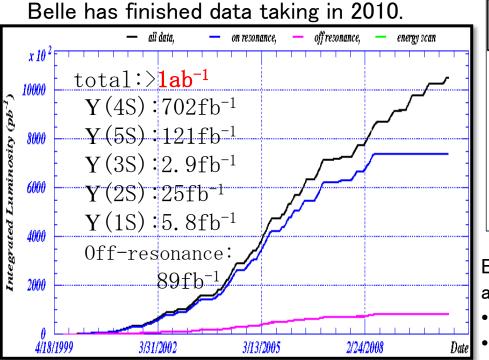
а

EDM

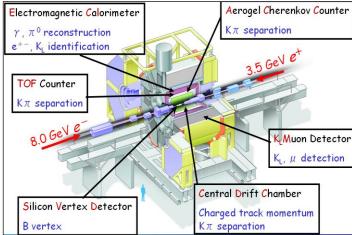


Evaluate 00

- Tau spin is also input to OO.
 - Need tau direction.
 - We can reconstruct tau direction with twofold ambiguity in case where both taus make hadronic decay.
 - In the case where one decay is leptonic, ambiguity gets continuous. e^+
 - In any case, the average is taken over the possible tau directions.
 - The size of helicity is evaluated from daughters' kinematical $\pi \not$


2015/05/29 FPCP2015

e⁺e⁻ CM frame



Belle experiment

B-factory: E at CM = $Y(4S) [e^+(3.5 \text{ GeV}) e^-(8 \text{ GeV})]$

A B-factory is also a tau factory since the production cross section for BB and τ -pair is very similar. (1.1nb vs 0.9nb)

Belle detector is a multi-purpose and asymmetric detector and has good: •lepton identification •hermeticity

Lepton ID ~ 80% for μ , 90% for e Fake ID ~ 3% for μ , 0.1% for e

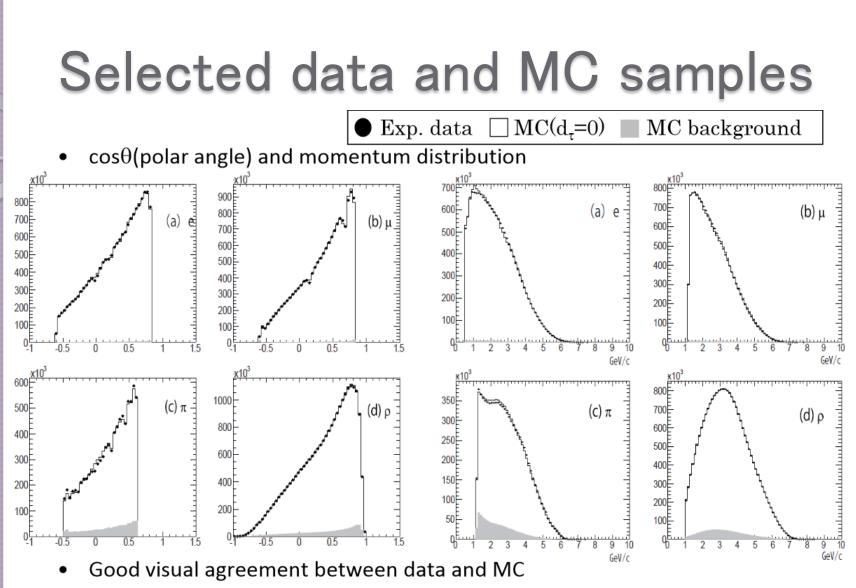
Selected tau decays and BG

•Select 8 final modes exclusively using 825fb⁻¹ data sample

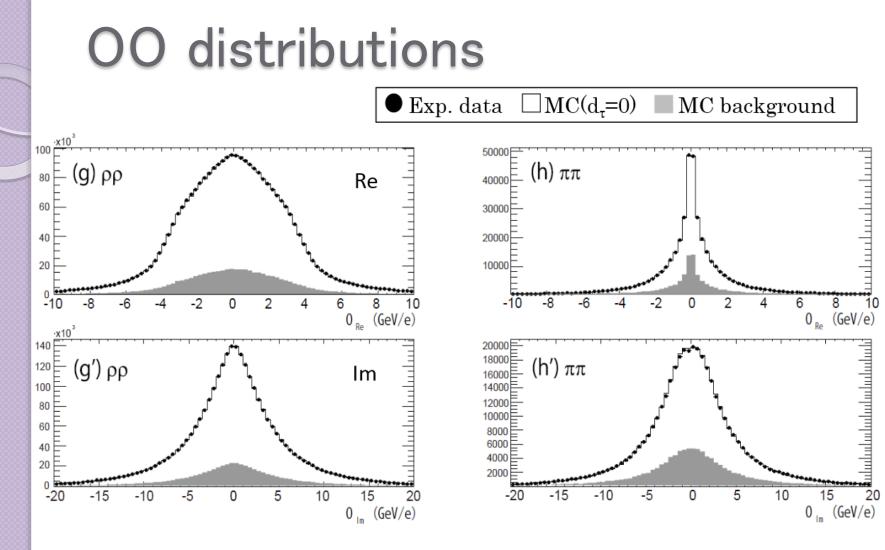
•ττ→eμ(4ν), eπ(3ν), μπ(3ν), μρ(3ν), πρ(2ν), ρρ(2ν), ππ(2ν)

•PID foe e, μ , π

• ρ reconstructed from $\pi\pi^0(\rightarrow\gamma\gamma)$


•Require high momentum and barrel region to reduce systematic errors

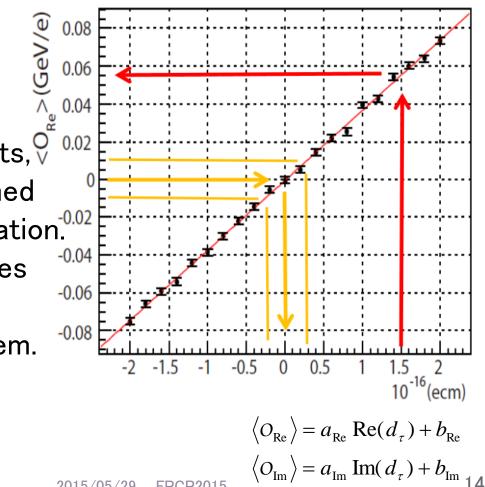
•Total yield: 3.5x10⁷ events, Averaged purity: 87.7%
•Background


•Main: from tau decay: Missing- π^0 and mis-PID

mode	yield	purity(%)	Background (%)
$e\mu$	6434k	95.8	$2\gamma \to \mu\mu(2.5)$
$e\pi$	2645k	85.7	$ au au o e ho(6.5) \ e \mu(5.1)$
$\mu\pi$	2504k	80.5	$\tau \tau \to \mu \rho(6.4) \ \mu \mu(4.9), \ 2\gamma \to \mu \mu(3.1)$
e ho	7219k	91.7	$ au au o e \pi \pi^0 \pi^0(4.6)$
μho	6203k	91.0	$\tau \tau \to \mu \pi \pi^0 \pi^0 (4.3)$
πho	2656k	77.0	$\tau \tau \to \rho \rho(6.7) \ \mu \rho(5.1) \ \pi \pi \pi^0 \pi^0(3.9)$
ho ho	6554k	82.4	$\tau \tau \to \rho \pi \pi^0 \pi^0(9.4) \ \rho K^*(3.1)$
$\pi\pi$	921k	71.9	$\tau \tau \to \pi \rho(11.3) \ \pi \mu(8.8) \ \pi K^*(2.5)$

11

 However, there are small mismatches in the distribution, which are the dominant contribution to the systematic error. →Discuss later

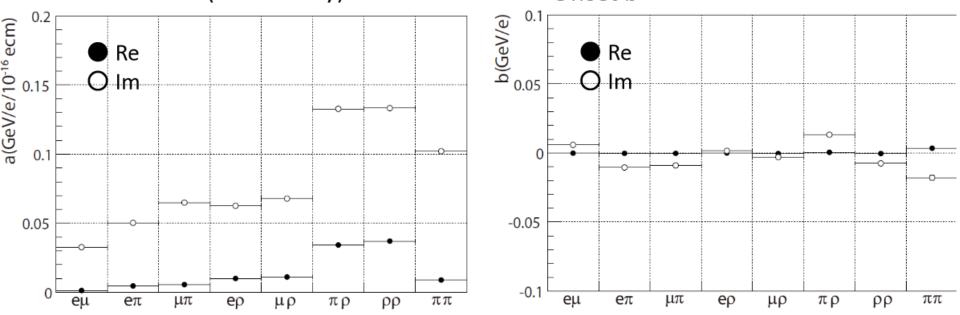

Good agreement in the distributions

Extract EDM from OO

• Since $\int \mathcal{M}_{Re}^2 d\phi$ and

 $\int \frac{(\mathcal{M}_{\rm Re}^2)^2}{\mathcal{M}_{\rm SM}^2} d\phi \text{ includes}$ complicated detector and acceptance effects, \heartsuit they cannot be obtained by the analytic calculation.^{-0.02} So, we use MC samples having different EDM values to evaluate them.

 $\langle O_{Re}\rangle \, vs \; EDM \; d_\tau$ from MC



2015/05/29 **FPCP2015**

Parameters to extract EDM

 We evaluate a and b mode by mode as well as finally EDM value mode by mode. And then, average those EDM values.
 Coefficient a (~sensitivity)

- Reduced sensitivity for leptonic decays due to additional missing neutrinos
- Offset b_{Im} due to the F/B asymmetric acceptance

Systematic uncertainties

(10⁻¹⁶ ecm)

							<u> </u>		
$Re(d_{\tau})$	$e\mu$	$e\pi$	$\mu\pi$	e ho	μho	πho	ho ho	$\pi\pi$	Prelimi
Mismatch of distribution	0.30	0.47	0.35	0.08	0.17	0.08	0.08	0.34	result
Charge asymmetry	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	
Background variation	0.16	0.03	0.16	0.04	0.02	0.02	0.02	0.33	
Momentum reconstruction	0.01	0.06	0.05	0.00	0.02	0.02	0.01	0.14	
Detector alignment	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.03	
Radiative effects	0.07	0.05	0.05	0.02	0.02	0.00	0.00	0.09	
Total	0.35	0.47	0.39	0.09	0.17	0.08	0.08	0.50	-
Statistical error	0.23	0.21	0.20	0.08	0.08	0.08	0.05	0.35	-
$Im(d_{\tau})$	$e\mu$	$e\pi$	$\mu\pi$	$e\rho$	μho	πho	$\rho \rho$	$\pi\pi$	-
Mismatch of distribution	0.09	0.09	0.05	0.05	0.07	0.04	0.04	0.12	-
Charge asymmetry	0.02	0.19	0.23	0.01	0.01	0.11	0.00	0.00	
Background variation	0.14	0.01	0.07	0.03	0.01	0.01	0.01	0.01	
Momentum reconstruction	0.02	0.05	0.04	0.00	0.01	0.01	0.00	0.01	
Detector alignment	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Radiative effects	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00	
Total	0.17	0.22	0.24	0.06	0.07	0.11	0.04	0.12	-
Statistical error	0.04	0.05	0.04	0.02	0.03	0.03	0.02	0.06	-
									-

Mismatch of distribution gives large contribution.

The systematic uncertainties are comparable to the statistical one.

Sensitivity of this measurement

- By adding statistical and systematic uncertainties for each mode quadratically, the error can be evaluated for the final result.
- The error of this measurement:

 $Re(d_{\tau}) \times 10^{17} : \pm 0.33 (ecm)$ $Im(d_{\tau}) \times 10^{17} : \pm 0.30 (ecm)$ Very preliminary

Previous result Re $(d_{\tau}) \times 10^{17}$:1.15 ±1.70 (ecm) Im $(d_{\tau}) \times 10^{17}$:-0.83 ± 0.86 (ecm)

- The error of $\text{Re}(d_{\tau})$ is around 5 times smaller than previously.
 - Almost proportional to $1/\sqrt{N}_{\tau\tau}$
- The error of $Im(d_{\tau})$ is dominated by the systematics.

The result will be shown soon.

TAU MICHEL PARAMETERS MEASUREMENT

0

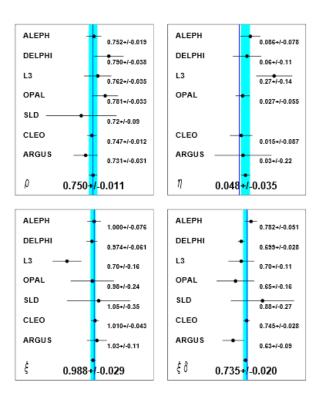
2015/05/29 FPCP2015

Introduction for tau Michel parameters

 Michel parameters (MP) well express the property of Weak interaction in tau decay and definition is:

 $\frac{d\Gamma(\tau \to \ell \nu \nu)}{d\Omega dx} = \frac{4G_F^2 M_\tau E_{\max}^4}{(2\pi)^4} \sqrt{x^2 - x_0^2} \left(x(1-x) + \frac{2}{9} \rho (4x^2 - 3x - x_0^2) + \underline{\eta} x_0(1-x) \right)$ $\mp \frac{1}{3} P_\tau \cos \theta_\ell \underline{\xi} \sqrt{x^2 - x_0^2} \left[1 - x + \frac{2}{3} \underline{\delta} (4x - 4 + \sqrt{1 - x_0^2}) \right] \right], x = \frac{E_\ell}{E_{\max}}, x_0 = \frac{m_\ell}{E_{\max}}$ • SM predicts: $\rho = \frac{3}{4}, \eta = 0, \xi = 1, \delta = \frac{3}{4}$ • Type II 2HFM predicts: $\eta = \frac{m_\mu M_\tau}{2} \left(\frac{\tan^2 \beta}{M_{H^\pm}^2} \right)^2$ Similarly, new physics effects can appear in Michel parameters, that more strongly couple to tau than muon.

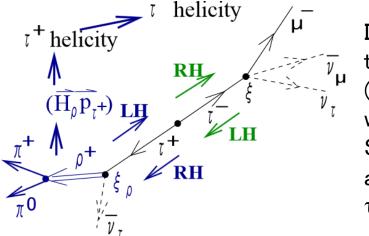
Current status of the measurement of MPs


Michel par.	Measured value	Experiment	SM value
ρ	$0.747 \pm 0.010 \pm 0.006$	CLEO-97	3/4
(e or μ)	1.2%		
η	$0.012 \pm 0.026 \pm 0.004$	ALEPH-01	0
(e or μ)	2.6%		
ξ	$1.007 \pm 0.040 \pm 0.015$	CLEO-97	1
(e or μ)	4.3%		
ξδ	$0.745 \pm 0.026 \pm 0.009$	CLEO-97	3/4
(e or μ)	2.8%		
$\xi_{\rm h}$	$0.992 \pm 0.007 \pm 0.008$	ALEPH-01	1
(all hadr.)	1.1%		

Using 300x more data sample at Belle than the previous experiment, one-order-magnitude improvement of the measurement is expected since Belle and BaBar have never evaluated them yet so far.

Current status of the measurement of MPs

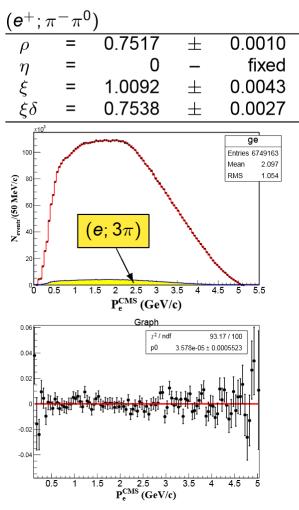
Michel par.	Measured value	Experiment	SM value
ρ	$0.747 \pm 0.010 \pm 0.006$	CLEO-97	3/4
(e or μ)	1.2%		
η	$0.012 \pm 0.026 \pm 0.004$	ALEPH-01	0
(e or μ)	2.6%		
ξ	$1.007 \pm 0.040 \pm 0.015$	CLEO-97	1
(e or μ)	4.3%		
ξδ	$0.745 \pm 0.026 \pm 0.009$	CLEO-97	3/4
(e or μ)	2.8%		
$\overline{\xi_{\rm h}}$	$0.992 \pm 0.007 \pm 0.008$	ALEPH-01	1
(all hadr.)	1.1%		

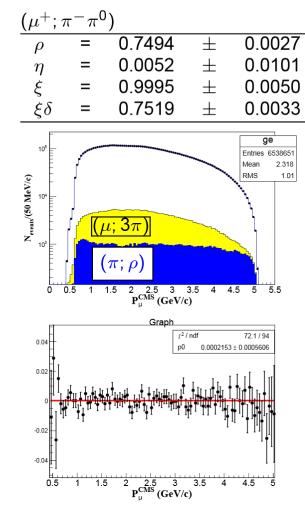


Using 300x more data sample at Belle than the previous experiment, one-order-magnitude improvement of the measurement is expected since Belle and BaBar have never evaluated them yet so far. O(0.1)%!

Analysis method

 Since tau spin information is necessary to measure some MPs, we utilize both tau decays:


In $\tau^+ \rightarrow \rho^+ \nu / \tau^- \rightarrow \ell^- \nu \nu$ events, to evaluate helicity of τ^- , (Similarly to the case of EDM) we use $\tau^+ \rightarrow \rho^+ \nu$ decay. Since $\tau \rightarrow \rho \nu$ decay includes another MP, we also evaluate $\tau^+ \rightarrow \rho^+ \nu / \tau^- \rightarrow \rho^- \nu$ events.


- Background: $\tau^+ \rightarrow \pi^+ \pi^0 \pi^0 \nu / \tau^- \rightarrow \ell^- \nu \nu (\sim 10\%)$, $\tau^+ \rightarrow \rho^+ \nu / \tau^- \rightarrow \pi^- \nu (\sim 1.5\%)$, others(~2.0%),non- $\tau \tau < 0.1\%$
- By an unbinned maximum likelihood fit, we evaluate MPs and amount of signal and BG.
 2015/05/29 EPGP2015

$$\begin{split} & \text{Likelihood function} \\ & \mathcal{P}(x) = \frac{\overline{\varepsilon}(x)}{\varepsilon} \Biggl((1 - \sum_{i} \lambda_{i}) \frac{S(x)}{\int \frac{\overline{\varepsilon}(x)}{\varepsilon} S(x) dx} + \lambda_{3\pi} \frac{\widetilde{B}_{3\pi}(x)}{\int \frac{\overline{\varepsilon}(x)}{\varepsilon} \widetilde{B}_{3\pi}(x) dx} + \lambda_{\pi} \frac{\widetilde{B}_{\pi}(x)}{\int \frac{\overline{\varepsilon}(x)}{\varepsilon} \widetilde{B}_{\pi}(x) dx} \\ & + \lambda_{other} \frac{B_{other}^{MC}(x)}{\int \frac{\overline{\varepsilon}(x)}{\varepsilon} B_{other}^{MC}(x) dx} \Biggr], \widetilde{B}_{3\pi}(x) = \int (1 - \varepsilon_{\pi^{0}}(y)) \varepsilon_{add}(y) B_{3\pi}(x, y) dy, \widetilde{B}_{\pi}(x) = \frac{\varepsilon_{\pi^{-1}\mu}^{MD}(x)}{\varepsilon_{\mu^{-1}\mu}^{MD}(x)} B_{\pi}(x) \\ & x = (p_{\ell}, \Omega_{\ell}, p_{\rho}, \Omega_{\rho}, m_{\pi\pi^{0}}^{2}, \Omega_{\pi}), y = (p_{\pi^{0}}, \Omega_{\pi^{0}}) \longleftarrow \begin{array}{c} \text{Multi-dimensional} \\ \text{fit!} \\ S(x) : \text{ density of signal } (Q^{\mp}, \pi^{\pm} 2\pi^{0}) \text{ events} \\ B_{3\pi}(x) : \text{ density of background } (\pi^{\mp}, \pi^{\pm} 2\pi^{0}) \text{ events} \\ B_{\pi}(x) : \text{ density of background } (\pi^{\mp}, \pi^{\pm} 2\pi^{0}) \text{ events} \\ B_{0, \text{det}}(x) : \text{ MC density of the remaining background} \\ \varepsilon(x) : \text{ detection efficiency for signal events} \\ \varepsilon_{\pi}(x) : \text{ additional efficiency background } (Q^{\mp}, \pi^{\pm} 2\pi^{0}) \text{ events} \\ \varepsilon_{\pi}(x) : \text{ detection efficiency for } (\pi^{\mp}, \pi^{\pm} 2\pi^{0}) \text{ events} \\ \end{array}$$

Test of the fitter with MC

For each configuration 5M MC sample is fitted. The other, statistically independent, 5M MC sample was used to calculate normalization.

2015/05/29 FPCP2015

Corrections

- Effects which should be included into the fit are listed up.
 - Physics corrections
 - Higher order corrections of EW for $e^+e^- \rightarrow \tau^+\tau^-$ reaction upto $O(\alpha^3)$
 - Radiative decays $\tau^{-} \rightarrow \ell^{-} \nu \nu \gamma, \tau^{-} \rightarrow \pi \pi^{0} \nu \gamma$
 - Detector effects
 - Track momentum resolution
 - γ energy and angular resolution
 - Beam energy spread
 - Effect of bremsstrahlung for e
 - DATA/MC efficiency correction for trigger, track rec., PID and so on.

Fit for the experimental data

2015/05/29 FPCP2015

Systematic uncertainties

Source	σ(ρ)	σ(η)	σ(ξ _ρ ξ)	σ(ξ _ρ ξδ)	Unit
	Phys	sics correct	ions		is in
ISR+O(α ³)	0.10	0.30	0.20	0.15	
τ→ℓννγ	0.03	0.10	0.09	0.08	
τ→ρνγ	0.06	0.16	0.11	0.02	
	Appar	atus corre	ctions		
Resolution +brems.	0.10	0.33	0.11	0.19	
σ(E _{beam})	0.07	0.25	0.03	0.15	
	Normal	ization corr	rections		
ΔN	0.21	0.60	0.38	0.26	
Total	0.27	0.81	0.47	0.40	

O(0.1)% measurements will be achieved.
 Now, studying details for the fit bias, which increases the systematics.

After understanding the fit result, we can show the final result.

2015/05/29 FPCP2015

Very preliminary

Summary

We are measuring tau EDM and tau Michel parameters using the world largest tau data sample. $\sim O(10^9)$

Tau EDM

 $\operatorname{Re}(d_{\tau}) \times 10^{17} : \pm 0.33 \,(ecm)$

 $\text{Im}(d_{\tau}) \times 10^{17} : \pm 0.30 \,(e\text{cm})$

Previous result

 $\operatorname{Re}(d_{\tau}) \times 10^{17} : 1.15 \pm 1.70 \,(ecm)$

 $\text{Im}(d_{\tau}) \times 10^{17} : -0.83 \pm 0.86 \,(e\text{cm})$

- For $\text{Re}(d_{\tau})$, improvement by $\sqrt{N}_{\tau\tau}$, For $\text{Im}(d_{\tau})$, systematic dominant.
- Tau Michel parameters
 - Errors of four parameters will be O(0.1)%

Summary

We are measuring tau EDM and tau Michel parameters using the world largest tau data sample. $\sim O(10^9)$

Tau EDM

 $\operatorname{Re}(d_{\tau}) \times 10^{17} : \pm 0.33 \,(ecm)$ $\operatorname{Im}(d_{\tau}) \times 10^{17} : \pm 0.30 \,(ecm)$ Previous result

 $\operatorname{Re}(d_{\tau}) \times 10^{17} : 1.15 \pm 1.70 \,(ecm)$

 $\text{Im}(d_{\tau}) \times 10^{17} : -0.83 \pm 0.86 \,(e\text{cm})$

- For $\text{Re}(d_{\tau})$, improvement by $\sqrt{N}_{\tau\tau}$, For $\text{Im}(d_{\tau})$, systematic dominant.
- Tau Michel parameters
 - Errors of four parameters will be O(0.1)%

Around summer, we will show the final results for both!

Contents of this talk

- a. Topics of tau physics at Belle
- b. Tau EDM measurement
- c. Tau Michel parameter measurement