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High-energy heavy-ion collisions

QGP formation is achieved at RHIC and LHC.

Comparison between experimental results and hydrodynamic simulations

» Transport properties and the equation of state of QGP
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i Towards quantitative understanding of QGP property,
Hydrodynamic evolution sophisticated viscous hydrodynamic simulations are needed.

Causal relativistic viscous hydrodynamics
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Simple relativistic extension of Navier-Stokes theory Is
acausal and unstable.

» Second-order hydrodynamics

Numerical approach

e We split the equations to an ldeal part and a viscous part. The Ideal
part Is solved by Riemann Solver.

Israel-Stewart equation Akamatsu, Inutsuka, Nonaka, Takamoto, JCP256, 34(2014)
(D + v@'az-)wW _ 1 (rhV ﬂ-KfVS) _ kv e \When the relaxation timg T, IS much shprter than_the fluid timescale,
VTn the Israel-Stewart equation demands high numerical costs.
Relaxation to Navier-Stokes value =» Peacewise Exact Solution(PES) method
Takamoto, Inutsuka,JCP230,7002(2011)
We have to treat additional equations, variables, and e Milne coordinates (7, x, y,n) which are suitable to describe the longitudinal
transport coefficients. expansion of QGP are used. Okamoto, Akamatsu, Nonaka, EPJC76,579(2016)

Kelvin-Helmholtz instability

Numerical tests

Viscous Gubser flow  Marrochio et al., PRC91,014903(2015) We consider the possible existence of Kelvin-Helmholtz instabllity
In heavy-ion collisions.

Initial condition

e Analytic solution of (3+1)D Israel-Stewart theory

e Radial expansion in transvers plane and boost-invariant
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e The Israel-Stewart equation is solved with the MC limiter. 0 02 04 06 08 1

e (Good agreement between analytic solutions and numerical

calculations. The expansion and viscosity effects smear the vortices at later times.

Summary

® New code for relativistic viscous hydrodynamics in heavy-ion collisions. Fyuture work

® Our code can reproduce the analytic solutions with good accuracy. Phenomenological study of heavy-ion collisions

® Kelvin-Helmholtz instability in heavy-ion collisions. Higher-flow harmonics, event plane correlations...



