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Global format

Objectives
Complement lectures on CP-violation with practical sessions
Understand how we know the amount of CP-violation in SM
Illustrate the challenges of extracting theoretical info from pheno

Outline of the three sessions
Determining the CKM matrix parameters (physics and statistics)
Implementing the approach in software (CKMfitter and 1st tutorial)
Using the web-based interface (CKMlive (2nd tutorial)

Please get Firefox and go to http://ckmlive.in2p3.fr
in order to register (sign in) and be ready for tomorrow’s session
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CKM, or a story of triangles

with my apologies to Yossi and to all of you for the repetitions
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Standard Model and weak interaction

SM: SUC(3)⊗ SUL(2)⊗ UY (1)

Colour (for quarks only)
Weak isospin (for left-handed fermions only)
Hypercharge (for everybody)

Interactions in covariant derivatives of kinetic terms, written in
terms of three distinct generations of interaction eigenstates

L = i
∑

J

ψ̄JD/ ψJ+. . . ψJ =

(
uL
dL

)
,

(
cL
sL

)
,

(
tL
bL

)
,uR,dR, cR . . .

After electroweak symmetry breaking, mass eigenstates ψ′, not
necessarily identical to interaction eigenstates ψ:

uL =

 u
c
t


L

= Vu

 u′

c′

t ′


L

dL =

 d
s
b


L

= Vd

 d ′

s′

b′


L

=⇒(Unitary) rotations may not align: Vu 6= Vd (ditto for uR, dR)
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FCCC: flavour-changing charged currents

W bosons couple to charged currents JµW
which in mass eigenstate basis involve matrix V

JµW = ūi
Lγ

µd i
L → ū′LV †uγµVdd ′L = ū′LVγµd ′L

flavour-changing charged currents at tree level

W

dj

iu
g√
2

[ūi
LVijγ

µd j
L W +

µ + d̄ j
LV ∗ij γ

µui
L W−

µ ]

unitary Cabibbo-Kobayashi-Maskawa matrix
(linked to electroweak symmetry breaking)
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FCNC: flavour-changing neutral currents
Neutral currents remain flavour-diagonal (same for uR,dR)∑

i

ūi
Lγ

µui
L →

∑
ij

ū
′j
L V †u,jiγ

µVu,iju
′j
L =

∑
j

ū
′j
Lγ

µu
′j
L ,∑

i

d̄ i
Lγ

µd i
L →

∑
ij

d̄
′j
L V †d ,jiγ

µVd ,ijd
′j
L =

∑
j

d̄
′j
L γ

µd
′j
L ,

No flavour-changing neutral currents in SM
. . . but only at tree level ! They can occur in loops (but suppressed)

Loop: Higher order in pert. theory (powers of g,g′)
GIM: Vanish in degenerate case mu = mc = mt

(proportional to V ∗tbVts + V ∗cbVcs + V ∗ubVus = 0)
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CP and CKM

C (Charge conjugation) and P (Parity) combined in CP

ψ̄1γµ(1− γ5)ψ2 → ψ̄2γµ(1− γ5)ψ1
ψ̄1γµ(1 + γ5)ψ2 → ψ̄2γµ(1 + γ5)ψ1

at (~x , t) at (−~x , t)
symmetry of QCD/QED, but
symmetry for weak interactions ?

W +
µ ūiVijγ

µ(1− γ5)dj + W−
µ d̄jV ∗ij γ

µ(1− γ5)ui

→ CP → W−
µ d̄iVijγ

µ(1− γ5)uj + W +
µ ūjV ∗ij γ

µ(1− γ5)di

= W +
µ ūiV ∗ij γ

µ(1− γ5)dj + W−
µ d̄jVijγ

µ(1− γ5)ui

Weak interactions are CP-invariant if V is real

Arbitrariness in field redefs means that for Ng generations, V contains

(Ng−1)(Ng−2)
2 phases and Ng(Ng−1)

2 moduli
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CKM matrix and CP violation

For two generations, 1 modulus, no
phase, no CP violation (Cabbibo)

V =

[
Vud Vus
Vcd Vcs

]
=

[
cos θ sin θ
− sin θ cos θ

]

For three generations, 3 moduli and 1 phase,
a unique source of CP violation in quark sector (Kobayashi-Maskawa)

V =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 '
 1− λ2

2 λ Aλ3(ρ̄− i η̄)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ̄− i η̄) −Aλ2 1

+ O(λ4)

Wolfenstein params exploiting observed hierarchy of matrix elements

=⇒extremely predictive model for CP violation embedded in SM
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SM unitarity triangles

Many unitarity relations, e.g., related to 4 neutral mesons (no top)
Bd meson (bd) : VudV ∗ub + VcdV ∗cb + VtdV ∗tb = 0 (λ3, λ3, λ3)

Bs meson (bs) : VusV ∗ub + VcsV ∗cb + VtsV ∗tb = 0 (λ4, λ2, λ2)

K meson (sd) : VudV ∗us + VcdV ∗cs + VtdV ∗ts = 0 (λ, λ, λ5)

D meson (cu) : VudV ∗cd + VusV ∗cs + VubV ∗cb = 0 (λ, λ, λ5)

Representation of CKM parameters through rescaled triangles

(small but non squashed)
BD-meson triangle (bd)

VudV ∗ub
VcdV ∗cb

+
VtdV ∗tb
VcdV ∗cb

+ 1 = 0

(large but squashed)
D-meson triangle (cu)

VudV ∗cd
VusV ∗cs

+
VubV ∗cb
VusV ∗cs

+ 1 = 0
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“The” unitarity triangle

In practice, rescaled Bd unitarity triangle often used as representation

good representation of CP-violation (small but non-squashed)
CKM matrix elements involved in interpretation of B decays
apex yields two of the four Wolfenstein parameters

λ2 =
|Vus|2

|Vud |2 + |Vus|2
, A2λ4 =

|Vcb|2

|Vud |2 + |Vus|2
, ρ̄+i η̄ = −

VudV ∗ub
VcdV ∗cb

defined in a convention-independent manner
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A handle on the CKM matrix

Measurements in terms of hadrons, not of quarks !

d → u: Nuclear physics (superallowed β decays)
s → u: Kaon physics (KLOE, KTeV, NA62)
c → d , s: Charm physics (CLEO-c, Babar, Belle, BESIII)
b → u, c and t → d , s: B physics (Babar, Belle, CDF, DØ, LHCb)
t → b: Top physics (CDF/DØ, ATLAS, CMS)

How to determine the structure of CKM matrix ?
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|Vij | from ∆F = 1

q
_M P

Leptonic, with fM decay constant

B[M → `ν`]SM =
G2

F mMm2
`

8π

(
1− m2

`

m2
M

)2

|Vquqd |
2f 2

MτM (1 + δM`2
em )

Semileptonic, with 2 form factors f+ and f0

dΓ(M → P`ν)

dq2 =
G2

F |Vquqd |
2

24π3

(q2 −m2
`)2
√

E2
P −m2

P

q4m2
H

×
[(

1 +
m2
`

2q2

)
m2

M (E2
P −m2

P)|f+(q2)|2 +
3m2

`

8q2 (m2
M −m2

P)2|f0(q2)|2
]

Hadronic quantities, determined from lattice QCD simulations
〈0|q̄uγµγ5qd |M〉 ∝ fM 〈P|q̄uγµqd |M〉 ∝ f+, f0
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A few decays of interest

Leptonic Semileptonic Others
|Vud | π → `ν`, τ → πντ π+ → π0e+νe nuclear β decays, n lifetime
|Vus| K → `ν`, τ → Kντ K → π`ν inclusive τ decays
|Vcd | D+ → `ν` D → π`ν` µ production by ν beams
|Vcs| Ds → `ν` D → K `ν` W → cs̄
|Vub| B → τν B → π`ν` B → Xu`ν` (incl)
|Vcb| (Bc → τντ ) B → D(∗)`ν B → Xc`ν` (incl)
|Vtb| − − t →Wb

No direct handle on Vtd , Vts through tree processes
Some processes not competitive theo/exp accuracy

Sébastien Descotes-Genon (LPT-Orsay) CKMfitter and CKMlive 21/02/19 14



arg(Vij) from CP-asymmetries
Take processes conjugate under CP

b → u : A(B̄0 → π+`−ν̄) ∝ Vub × FB→π

b̄ → ū : A(B0 → π−`+ν) ∝ V ∗ub × FB→π

where FB→π form factor encoding hadronisation of quarks into hadrons

General feature : flavour processes with
weak part : odd under CP (phase from CKM)
strong part : even under CP (phase from strong interaction)

|Vij | via CP-conserving quantity (|A|2)
from rates where hadronic quantities are crucial

arg Vij via CP-violating quantity (Re(A1A∗2), Im(A1A∗2))
from asymmetries where hadronic quantities may cancel out
=⇒CP-viol. from relative phases between conjugate proc.
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CKM elements from ∆F = 2
Loops allow ∆F = 2 FCNC

=⇒neutral-meson mixing

i
d
dt

( |M(t)〉
|M̄(t)〉

)
=
(

M − i
2

Γ
)( |M(t)〉
|M̄(t)〉

)

Diagonalisation: physical |MH,L〉 of masses MH,L, widths ΓH,L

|ML〉 = p|M〉+ q|M̄〉, |MH〉 = p|M〉 − q|M̄〉 |p|2 + |q|2 = 1

For Bd and Bs dominated by top boxes

A∆B=2 ∝ (V ∗tbVtq)2 g4m2
t

16π2m4
W
〈B̄q|(b̄LγµdL)2|Bq〉+ . . .

mass difference ∆mq through hadronic contrib 〈B̄q|(b̄LγµdL)2|Bq〉
(bag parameter BBq )

mixing involve single weak phase: q/p = exp[i arg[(V ∗tbVtq)2]
similar but more complicated for K (charm and top)
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A few modes of interest

Exp. uncertainties (Controlled) th. uncertainties
B → ππ, ρρ α B(b)→ D(c)`ν |Vcb| vs form factor (OPE)
B → DK γ B(b)→ π(u)`ν |Vub| vs form factor (OPE)

M → `ν(γ) |VUD| vs fM (decay cst)
B → J/ΨKs β εK (ρ̄, η̄) vs BK (bag parameter)
Bs → J/Ψφ βs Bd B̄d ,BsB̄s mix |VtbVtq | vs f 2

B BB (bag param)

braching ratios of leptonic/semileptonic decays (moduli)
CP-asymmetries (angles of unitarity triangles(s))
neutral-meson mixing (product of CKM matrix elements)
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Inputs for Summer 18 global fit

frequentist (' χ2 minim.) + Rfit scheme for theory uncert.

data = weak ⊗ QCD =⇒Need for hadronic inputs (mostly lattice)

|Vud | superallowed β decays Towner and Hardy
|Vus| K`3 PDG f+(0) = 0.9661± 0.0014± 0.0022

K → `ν, τ → Kντ PDG fK = 155.6± 0.2± 0.6 MeV
|Vus/Vud | K → `ν/π → `ν, τ → Kντ/τ → πντ fK /fπ = 1.1959± 0.0007± 0.0029

εK PDG B̂K = 0.7567± 0.0021± 0.0123
|Vcd | D → µν, D → π`ν fDs/fD = 1.175± 0.001± 0.004, f D→π

+ (0)
|Vcs| Ds → µν, Ds → τν, D → π`ν fDs = 247.8± 0.3± 2.0 MeV, f D→K

+ (0)
|Vub| inclusive and exclusive B semileptonic |Vub| · 103 = 3.98± 0.08± 0.22
|Vcb| inclusive and exclusive B semileptonic |Vcb| · 103 = 41.8± 0.4± 0.6

B → τν (1.08± 0.21) · 10−4 fBs/fBd
= 1.205± 0.003± 0.006

fBs = 226.0± 1.3± 2.0 MeV
|Vub/Vcb| Λb semileptonic decays integrals of Λb form factors

∆md last WA Bd -B̄d mixing BBs/BBd
= 1.007± 0.013± 0.014

∆ms last WA Bs-B̄s mixing BBs = 1.327± 0.016± 0.030
β last WA (cc̄) K (∗) no penguin pollution
α last WA ππ, ρπ, ρρ isospin
γ last WA B → D(∗)K (∗) GLW/ADS/GGSZ

as well as inputs on mt ,mc , αs(MZ )
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The current status of CKM

γ

γ

α

α

dm∆
Kε

Kε

sm∆ & dm∆

SLubV

ν τubV

bΛubV

βsin 2

(excl. at CL > 0.95)
 < 0βsol. w/ cos 2

excluded at C
L > 0.95

α

βγ

ρ
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

η

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
excluded area has CL > 0.95

Summer 18

CKM
f i t t e r

|Vud |, |Vus|, |Vcb|, |Vub|SL

B → τν

∆md , ∆ms, εK

α, sin 2β, γ

A = 0.840+0.005
−0.020

λ = 0.2247+0.0003
−0.0001

ρ̄ = 0.158+0.010
−0.007

η̄ = 0.349+0.010
−0.007

(68% CL)
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Two decades of CKM
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Statistics, or reaching for the optmimum
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The name of the game

In these plots, we combine
many different observables (experimental data)
which depend on CKM parameters A, λ, ρ̄, η̄
but also hadronic parameters fB,FB→π,BBs . . .

to constrain the value of the CKM parameters

Require a statistical approach
Bayesian: treat probabilities as (subjective) degree of belief rather
than outcome of repeated experiments
Frequentist: devise methods that will provide values that would be
“often” correct if experiments repeated

together with specific treatment of theory uncertainties (hadronic)
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A simple case

Imagine that
we measure the observable X = X0 ± σ
according to our theory, X = x(µ) with µ a fundamental parameter

We want to test a hypothesis Hµ : µt = µ
where µt is the “true” value of µ

We define a test statistic T (X ;µ)

a positive number indicating if measurement X is in favour of Hµ
large values of T disfavour Hµ, small ones favour Hµ

T (X0;µ) useful to determine if actual data X0 supports Hµ
provided that we know the distribution of T (X ;µ)

p-value defined as p(X0;µ) = P[T > T (X0;µ)]

assuming Hµ and repeating the experiment,
how often would I get T worse than the one observed ?

a small p-value indicates that T is rarely larger than T (X0;µ)
corresponding to the case where X0 disfavours Hµ

can be used to build confidence intervals
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An even simpler case

Assume that
we measure the observable X = X0 ± σ = 0± 1
according to our theory, X = x(µ) = µ to be constrained

A good test statistic is T (X ;µ) = (X − µ)2 [more later]
p.d.f. of T known, assuming X Gaussian random variable µ± 1

so that we can compute p(X0 = 0;µ) for any Hµ

Once p-value is known as a function of µ
confidence interval at α corresponding to interval with p = 1− α

0 2 4 6 8 10
T

0.2

0.4

0.6

0.8

1.0
p.d.f.

red: µ = 2.5
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Statistical significance and coverage

if p-value well designed (exact coverage), this random variable
has a uniform p.d.f., i.e. for any α, we have P[p ≤ α|Hµ] = α
=⇒what is needed to defined meaningful confidence intervals !

if we repeated the experiment, the α confidence interval would
contain the true value µt in a fraction α of all the experiments
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Assume µt = 0 and repeat
measuring X with
uncertainty σ = 1
For each measurement X0,
p-value centered around
X0, and each time 68% CI
If exact coverage, CI
contain true value 68% of
the time (green curves)
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Test statistic

Based on the likelihood LX (µ) = g(X ;µ) [p.d.f. of X under Hµ]

Simple hypothesis
each hypothesis with all theoretical parameters fixed explicitly
Neyman-Pearson: most powerful test to discriminate 2 simple
hypotheses Hµ1 & Hµ2 given by

T (X ;µ1, µ2) = −2 log
LX (µ1)

LX (µ2)

Composite hypothesis
only some of the theoretical parameters µ fixed explicitly
the others, ν, are not determined explicitly [nuisance parameters]
by analogy with simple case, Maximal Likelihood Ratio (MLR)

T (X ;µ) = −2 log
maxν′ LX (µ, ν′)

maxµ′,ν′ LX (µ′, ν′)

empirically powerful, but no general proof
Wilks’ theorem: in large-sample limit, under regularity conditions, T
distributed as χ2 with dim given by the number of params tested
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Applying Maximal Likelihood Ratio

Test statistic
one or two parameters of interest, and remaining nuisance params

for instance µ = (ρ̄, η̄) ν = (A, λ, fB,F K→π,BBs . . .)

test statistic from the likelihoods

T (X ;µ) = −2 log
maxν′ LX (µ, ν ′)

maxµ′,ν′ LX (µ′, ν ′)
= χ2(µ)−min

µ
χ2(µ) = ∆χ2

with χ2(µ) = minν′ [−2 logLX (µ, ν ′)]

Statistical exploitation
T = ∆χ2 as χ2-law with Ndof yields p-value as a function of µ to
determine confidence intervals/regions on µ
minµ χ2(µ) = χ2

min as indication of overall goodness of fit
many minimisations and scan over the parameters
assumption that Wilks’ theorem holds (large enough sample)

≡ least squares and confidence intervals from ∆χ2 if Gaussian
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A typical outcome: Br(Bs → µµ)

]-9) [10µµ→
s
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many different inputs constraining the value of CKM parameters
out of which a p-value curve can be shown for Br(Bs → µµ)
best-fit point for p = 1, 68% CI at p = 0.32, 95% CI at p = 0.05
comparison with experimental value (in blue)
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Special cases

Angles deserving a special statistical treatment due to their extraction
α: discrete ambiguities at the level of the measurement
γ: bias depending on the size of hadronic contributions, altering
the coverage and requiring specific determination of p-values
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Not Gaussian, described through a Look-Up Table (LUT) file
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General expressions for special cases

If Wilks’ theorem does not apply, no simple analytic expressions
p.d.f. for measurement of obs X under hypothesis Hµ

g(X ;µ) = LX (µ) defining the likelihood
test statistic in terms of likelihoods

T (X ;µ) = −2 log
maxν′ LX (µ, ν ′)

maxµ′,ν′ LX (µ′, ν ′)

p.d.f. for test statisttic

h(T |Hµ) =

∫
dX δ [T − T (X ;µ)] g(X ;µ)

p-value for µ if X0 is measured, and corresponding CI

1− p(X0;µ) =

∫ T (X0;µ)

0
dT h(T |Hµ) = P[T < T (X0;µ)]

p-value can thus be computed numerically (Toy Monte Carlo),
but only used if away from asymptotic limit (no Wilks’ theorem)
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Theoretical uncertainties

Observable = CKM ⊗ hadronic
hadronic input often from lattice QCD simulations: X = X0±σ±∆

σ statistical, scales with size of sampling, Gaussian model
∆ theoretical, dominant for lattice, modelling with no consensus
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Χ2
CKMfitter: Rfit approach

modify likelihood
L = exp(−χ2/2)
χ2 with flat bottom
(theo/syst) and parabolic
walls (stat)
all values within range of
syst treated on same footing
averaging procedure
designed consistently

Other approaches: Gaussian (combined in quadrature with
statistics), adaptive. . . [Charles et al.]
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Another typical outcome: |Vcb|

|
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Inclusive (B → Xc`ν) and exclusive (B → D(∗)`ν) determinations
with significant theoretical uncertainties (flat top of p-values)
Average designed to take into account Rfit for theo uncertainties
Global fit prediction (without |Vcb| input) smooth

Sébastien Descotes-Genon (LPT-Orsay) CKMfitter and CKMlive 21/02/19 32



Take-home message

p = (A, λ, ρ̄, η̄ . . .) = (q, r)

q parameters of interest (CKM), r nuisance parameters (hadronic)
Omeas ± σO experimental values of observables
Oth(p) theoretical description in a given model

L(p) =
∏
O
LO(p) T (p) = −2 lnL(p) =

∑
O

(
Oth(p)−Omeas

σO

)2

χ2(q) = min
r

T (q, r)

Central value: estimator q̂ max likelihood χ2(q̂) = minq χ
2(q)

Range: confidence level (p-value) for q0 computed from
∆χ2(q0) = χ2(q0)−minq χ

2(q), assuming χ2 law with N = dim(q)

Specific (Rfit) treatment of theoretical uncertainties modifying L,
and impacting the procedure to average measurements
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The current status of CKM
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|Vud |, |Vus|, |Vcb|, |Vub|SL

B → τν

∆md , ∆ms, εK

α, sin 2β, γ

A = 0.840+0.005
−0.020

λ = 0.2247+0.0003
−0.0001

ρ̄ = 0.158+0.010
−0.007

η̄ = 0.349+0.010
−0.007

(68% CL)
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Any questions ?
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