

Transition form factors — η and f_1

Bastian Kubis

HISKP (Theorie) & BCTP Universität Bonn, Germany

Muon g-2 theory initiative workshop KEK, 1/7/2021

Simon Eidelman (1948–2021)

picture credit: Zdeněk Doležal 2014

B. Kubis, Transition form factors - p. 2

Outline

Paradigm: π^0 transition form factor

η transition form factor: from singly- to doubly-virtual

• analysis of $e^+e^- \rightarrow \eta \pi^+\pi^-$ and comparison to

 $\eta \rightarrow \pi^+ \pi^- \gamma$ Simon Holz, Plenter et al., arXiv:1509.02194v2

Axial-vectors

• form factor phenomenology for the $f_1(1285)$

Marvin Zanke, BK, Hoferichter, arXiv:2103.09829

Summary / Outlook

Paradigm case: the π^0 transition form factor

Hoferichter, Hoid, BK, Leupold, Schneider 2018

• double-spectral-function representation for π^0 TFF

$$F_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2) = \frac{1}{\pi^2} \int_{4M_\pi^2}^{\infty} dx \int_{s_{\rm thr}}^{\infty} dy \frac{\left[\rho^{\rm disp} + \rho^{\rm eff} + \rho^{\rm asym}\right](x, y)}{(x - q_1^2)(y - q_2^2)}$$

- $\triangleright \rho^{\text{disp}}$: leading 2π and 3π singularities
- $\triangleright \rho^{\text{eff}}$: effective pole (small), fulfils sum rules for

$$F_{\pi^0\gamma^*\gamma^*}(0,0)$$
 and $\lim_{Q^2\to\infty}F_{\pi^0\gamma^*\gamma^*}(-Q^2,0)$ [Brodsky–Lepage]

 $\triangleright \rho^{asym}$: pQCD asymptotics above matching scale s_m rewritten from pion wave function

Paradigm case: the π^0 transition form factor

Hoferichter, Hoid, BK, Leupold, Schneider 2018

• double-spectral-function representation for π^0 TFF

$$F_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2) = \frac{1}{\pi^2} \int_{4M_\pi^2}^{\infty} dx \int_{s_{\rm thr}}^{\infty} dy \frac{\left[\rho^{\rm disp} + \rho^{\rm eff} + \rho^{\rm asym}\right](x, y)}{(x - q_1^2)(y - q_2^2)}$$

 $\triangleright \rho^{\text{disp}}$: leading 2π and 3π singularities

 $\triangleright \rho^{\text{eff}}$: effective pole (small), fulfils sum rules for

$$F_{\pi^0\gamma^*\gamma^*}(0,0)$$
 and $\lim_{Q^2\to\infty}F_{\pi^0\gamma^*\gamma^*}(-Q^2,0)$ [Brodsky–Lepage]

- $\triangleright \rho^{asym}$: pQCD asymptotics above matching scale s_m rewritten from pion wave function
- here: only improve $ho^{ ext{disp}}$ for η cf. S. Holz, talk at Seattle meeting 2019
- implement asymptotics for axial-vector TFF(s)

Dispersive analysis of $\pi^0/\eta o \gamma^*\gamma^*$

isospin decomposition:

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2}, q_{2}^{2}) = F_{vs}(q_{1}^{2}, q_{2}^{2}) + F_{vs}(q_{2}^{2}, q_{1}^{2})$$
$$F_{\eta\gamma^{*}\gamma^{*}}(q_{1}^{2}, q_{2}^{2}) = F_{vv}(q_{1}^{2}, q_{2}^{2}) + F_{ss}(q_{1}^{2}, q_{2}^{2})$$

leading hadronic intermediate states:

- isovector photon: 2 pions
 - pion vector form factor well known from $e^+e^- \rightarrow \pi^+\pi^ \propto$
 - $\eta \rightarrow \pi \pi \gamma^*$ P-wave amplitude \times

Omnès representation

isoscalar photon: 3 pions

 \longrightarrow dominated by narrow ω, ϕ ; very small for the η

Final-state universality: $\eta,~\eta'
ightarrow \pi^+\pi^-\gamma$

• $\pi^+\pi^-$ in P-wave \longrightarrow universal final-state interactions; ansatz:

$$\mathcal{F}_{\eta^{(\prime)}\pi\pi\gamma}(t) = A \times P(t) \times \Omega(t), \quad P(t) = 1 + \alpha^{(\prime)}t, \quad t = M_{\pi\pi}^2$$

• divide data by Omnès function $\Omega(t) \longrightarrow P(t)$ Stollenwerk et al. 2012

data: KLOE 2013

$\eta,\,\eta' ightarrow\pi^+\pi^-\gamma$ with left-hand cuts

• include a_2 : leading resonance in $\pi \eta^{(\prime)}$ π η^{\prime} a_2 a_{2} 2.6 2.4 1.5 2.2 1.4 2.0 D(t)(t)1.6 1.2 1.4 1.1 $\eta' \to \pi^+ \pi^- \gamma$ $\eta \to \pi^+ \pi^- \gamma$ 1.2 1.0 1.0 0.9 0.8 0.0 $t^{0.5}$ GeV² $t^{0.5} \, \mathrm{GeV}^{0.6}$ 0.2 0.9 0.1 0.3 0.4 0.8 0.9 0.3 0.4 0.8 0.2 0.7 1.0 0.1 1.0 KLOE 2013; BK, Plenter 2015 BESIII 2017; Hanhart et al. 2017 • induces curvature in P(t)• curvature, plus $\rho - \omega$ mixing

Transition form factor $\eta
ightarrow \gamma^* \gamma$

Hanhart et al. 2013, BK, Plenter 2015

Transition form factor $\eta' ightarrow \gamma^* \gamma$

- isovector: combine high-precision data on $\eta' \to \pi^+ \pi^- \gamma$ and $e^+ e^- \to \pi^+ \pi^-$
- isoscalar: VMD, couplings fixed from

$$\eta'
ightarrow \omega \gamma$$
 and $\phi
ightarrow \eta' \gamma$

How to go *doubly* virtual? — $e^+e^- ightarrow \eta\pi^+\pi^-$

• idea (again): beat α^2_{QED} suppression of $e^+e^- \rightarrow \eta e^+e^-$ by measuring $e^+e^- \rightarrow \eta \pi^+\pi^-$ instead

• test factorisation hypothesis in $e^+e^- \rightarrow \eta \pi^+\pi^-$:

$$F_{\eta\pi\pi\gamma^*}(t,k^2) \stackrel{!!}{=} F_{\eta\pi\pi\gamma^*}(t,0) \times \tilde{F}_{\eta\gamma\gamma^*}(k^2)$$

How to go *doubly* virtual? — $e^+e^- ightarrow \eta\pi^+\pi^-$

• idea (again): beat α^2_{QED} suppression of $e^+e^- \rightarrow \eta e^+e^-$ by measuring $e^+e^- \rightarrow \eta \pi^+\pi^-$ instead

• test factorisation hypothesis in $e^+e^- \rightarrow \eta \pi^+\pi^-$:

$$F_{\eta\pi\pi\gamma^*}(t,k^2) \stackrel{!?}{=} F_{\eta\pi\pi\gamma^*}(t,0) \times \tilde{F}_{\eta\gamma\gamma^*}(k^2)$$

- ▷ allow same form for $F_{\eta\pi\pi\gamma^*}(t,0)$ as in $\eta \to \pi^+\pi^-\gamma$; 3 models:
 - 1. $P^{(1)}(t,0) \times \Omega(t)$, linear function $P^{(1)}(t,0)$
 - **2.** $P^{(2)}(t,0) \times \Omega(t)$, quadratic function $P^{(2)}(t,0)$
 - 3. $P^{(a_2)}(t,k^2) \times \Omega(t)$, a_2 left-hand cut
 - \longrightarrow induces "natural" factorisation breaking
- \triangleright fit subtractions to $\pi^+\pi^-$ distribution in $e^+e^- \rightarrow \eta\pi^+\pi^-$

 \longrightarrow are they compatible with the ones in $\eta \rightarrow \pi^+ \pi^- \gamma$?

Holz, Plenter et al. 2021

How to go *doubly* virtual? — $e^+e^- ightarrow \eta\pi^+\pi^-$

Holz, Plenter et al. 2021; data: BaBar 2007, 2018

- $\tilde{F}_{\eta\gamma\gamma^*}(k^2)$ parameterised by sum of Breit–Wigners (ρ , ρ' , ρ'')
- differential spectra $d\sigma/d\sqrt{t}$ integrated over large k^2 range
- $\pi\pi$ spectrum imperfectly described below (?!) the $\rho(770)$ peak

Extrapolation from $e^+e^- o \eta \pi^+\pi^-$ to $\eta o \pi^+\pi^-\gamma$

• subtractions fixed from k^2 -integrated $\pi\pi$ spectra —

compatible with $\eta \rightarrow \pi^+ \pi^- \gamma$?

Holz, Plenter et al. 2021

- ▷ yes with the naïve, factorising, quadratic model
- \triangleright no with the physically motivated a_2 model
- extrapolated form factor prediction too low for the full model

Axial-vector transition form factors

- Landau–Yang: no decay into two real photons Landau 1948, Yang 1950
- gauge invariant, singularity-free decomposition into 3 form factors:

$$\mathcal{M}_{A\gamma^*\gamma^*}^{\mu\nu\alpha}(q_1, q_2) = \frac{i}{m_A^2} \sum_{i=a_1, a_2, s} T_i^{\mu\nu\alpha}(q_1, q_2) \mathcal{F}_i(q_1^2, q_2^2)$$

Bardeen, Tung 1968, Tarrach 1975; Hoferichter, Stoffer 2020

• Bose symmetry: under $q_1 \leftrightarrow q_2$ $\triangleright T_s^{\mu\nu\alpha}(q_1, q_2)$ and $\mathcal{F}_s(q_1^2, q_2^2)$ symmetric $\triangleright T_{a_{1/2}}^{\mu\nu\alpha}(q_1, q_2)$ and $\mathcal{F}_{a_{1/2}}(q_1^2, q_2^2)$ antisymmetric

Axial-vector transition form factors

- Landau–Yang: no decay into two real photons Landau 1948, Yang 1950
- gauge invariant, singularity-free decomposition into 3 form factors:

$$\mathcal{M}_{A\gamma^*\gamma^*}^{\mu\nu\alpha}(q_1, q_2) = \frac{i}{m_A^2} \sum_{i=a_1, a_2, s} T_i^{\mu\nu\alpha}(q_1, q_2) \mathcal{F}_i(q_1^2, q_2^2)$$

Bardeen, Tung 1968, Tarrach 1975; Hoferichter, Stoffer 2020

- Bose symmetry: under $q_1 \leftrightarrow q_2$
 - $\triangleright T^{\mu\nu\alpha}_{s}(q_1,q_2) \text{ and } \mathcal{F}_{s}(q_1^2,q_2^2) \text{ symmetric}$
 - $\triangleright T^{\mu\nu\alpha}_{a_{1/2}}(q_1,q_2) \text{ and } \mathcal{F}_{a_{1/2}}(q_1^2,q_2^2) \text{ antisymmetric}$
- here: concentrate on the $f_1(1285) \longrightarrow$ best data basis
- isospin decomposition: isovector-isovector + isoscalar-isoscalar
 SU(3) + mixing information: L3 2007

isoscalar / isovector $\sim 5\% \longrightarrow$ small correction

Axial-vector transition form factors: asymptotics

• light-cone expansion: $\phi(u) = 6u(1-u)$ Hoferichter, Stoffer 2020 \longrightarrow talk P. Stoffer; cf. also Leutgeb, Rebhan 2020 $\mathcal{F}_{a_1}(q_1^2, q_2^2) = \mathcal{O}(q_i^{-6})$ $\mathcal{F}_{a_2}(q_1^2, q_2^2) = \underbrace{\mathcal{F}_A^{\text{eff}}}_{A} m_A^3 \int_0^1 du \frac{(2u-1)\phi(u)}{(uq_1^2 + (1-u)q_2^2 - u(1-u)m_A^2)^2} + \mathcal{O}(q_i^{-6})$ eff. decay const. $\mathcal{F}_s(q_1^2, q_2^2) = -\mathcal{F}_A^{\text{eff}} m_A^3 \int_0^1 du \frac{\phi(u)}{(uq_1^2 + (1-u)q_2^2 - u(1-u)m_A^2)^2} + \mathcal{O}(q_i^{-6})$

• with
$$Q^2 = \frac{q_1^2 + q_2^2}{2}$$
, $w = \frac{q_1^2 - q_2^2}{q_1^2 + q_2^2}$:
 $\mathcal{F}_{a_2/s}(q_1^2, q_2^2) = \frac{F_A^{\text{eff}} m_A^3}{Q^4} f_{a_2/s}(w)$
 $+ \mathcal{O}(Q^{-6})$

singly-virt. limits w = ±1 divergent
 → always suppressed in physical observables/helicity amplitudes

f_1 transition form factors: VMD model

• construct VMD model from $\rho(770)$ and $\rho(1450)$ Breit–Wigners:

 $\mathcal{F}_{a_{1/2}}(q_1^2, q_2^2) = C_{a_{1/2}} \left[(\rho \rho') - (\rho' \rho) \right]$

• two variants for dominant $\mathcal{F}_s(q_1^2, q_2^2)$: $\mathcal{F}_s(q_1^2, q_2^2) = C_s \left[(\rho \rho) \right]$

$$f_1 = \begin{pmatrix} \rho, \rho' \\ \rho, \rho' \\ \rho, \rho' \\ \gamma^{(*)} \\ \gamma^{(*)} \end{pmatrix}$$

Zanke, Hoferichter, BK 2021

$$\tilde{\mathcal{F}}_s(q_1^2, q_2^2) = C_s \left\{ (1 - \epsilon_1 - \epsilon_2)(\rho\rho) + \frac{\epsilon_1}{2} \left[(\rho\rho') + (\rho'\rho) \right] + \epsilon_2(\rho'\rho') \right\}$$

 \longrightarrow use $\epsilon_{1/2}$ to tune high-energy behaviour:

	$\mathcal{F}_{a_1}(q_1^2,q_2^2)$		$\mathcal{F}_{a_2}(q_1^2,q_2^2)$	$\mathcal{F}_s(q_1^2,q_2^2)$	$\mathcal{F}_{a_2+s}(q_1^2, q_2^2)$
	$q_{1/2}^2\approx q^2$	$q_2^2 = 0$	$q_{1/2}^2\approx q^2$	$q_{1/2}^2 = q^2$	$q_2^2 = 0$
LCE	$1/q^{6}$	$1/q_{1}^{6}$	$1/q^4$	$1/q^4$	$1/q_{1}^{4}$
VMD	$1/q^6$	$1/q_{1}^{2}$	$1/q^6$	$1/q^4$	$1/q_{1}^{2}$
VMD	$1/q^6$	$1/q_{1}^{2}$	$1/q^6$	$1/q^{6}$	$1/q_{1}^{4}$

 \longrightarrow add asymptotic piece above threshold s_m as for π^0

Determination of 3 normalisation constants C_s , C_{a_1} , C_{a_2}

• $e^+e^- \rightarrow e^+e^-f_1$: L3 2007 equivalent two-photon decay width $\tilde{\Gamma}_{\gamma\gamma} = \lim_{q_1^2 \to 0} \frac{1}{2} \frac{m_{f_1}^2}{q_1^2} \Gamma(f_1 \rightarrow \gamma_L^* \gamma_T)$ $= \frac{\pi \alpha_{\text{QED}}^2}{48} m_A |\mathcal{F}_s(0,0)|^2$

+ slope extracted assuming dipole

Determination of 3 normalisation constants C_s , C_{a_1} , C_{a_2}

• $e^+e^- \rightarrow e^+e^-f_1$: L3 2007 equivalent two-photon decay width

$$\tilde{\Gamma}_{\gamma\gamma} = \lim_{q_1^2 \to 0} \frac{1}{2} \frac{m_{f_1}^2}{q_1^2} \Gamma(f_1 \to \gamma_L^* \gamma_T)$$
$$= \frac{\pi \alpha_{\mathsf{QED}}^2}{48} m_A |\mathcal{F}_s(0,0)|^2$$

+ slope extracted assuming dipole

• $f_1 \to 2(\pi^+\pi^-)$ not useful for TFFs: $\mathcal{B}(f_1 \to 2\rho^0) \ll \mathcal{B}(f_1 \to a_1^{\pm}\pi^{\mp})$

Determination of 3 normalisation constants C_s , C_{a_1} , C_{a_2}

• $e^+e^- \to e^+e^-f_1$: L3 2007

equivalent two-photon decay width

$$\tilde{\Gamma}_{\gamma\gamma} = \lim_{q_1^2 \to 0} \frac{1}{2} \frac{m_{f_1}^2}{q_1^2} \Gamma(f_1 \to \gamma_L^* \gamma_T)$$
$$= \frac{\pi \alpha_{\mathsf{QED}}^2}{48} m_A |\mathcal{F}_s(0,0)|^2$$

+ slope extracted assuming dipole

• $f_1 \to 2(\pi^+\pi^-)$ not useful for TFFs: $\mathcal{B}(f_1 \to 2\rho^0) \ll \mathcal{B}(f_1 \to a_1^{\pm}\pi^{\mp})$

Determination of 3 normalisation constants C_s , C_{a_1} , C_{a_2}

• $e^+e^- \to e^+e^-f_1$: L3 2007

equivalent two-photon decay width

$$\tilde{\Gamma}_{\gamma\gamma} = \lim_{q_1^2 \to 0} \frac{1}{2} \frac{m_{f_1}^2}{q_1^2} \Gamma(f_1 \to \gamma_L^* \gamma_T)$$
$$= \frac{\pi \alpha_{\mathsf{QED}}^2}{48} m_A |\mathcal{F}_s(0,0)|^2$$

+ slope extracted assuming dipole

- $f_1 \to 2(\pi^+\pi^-)$ not useful for TFFs: $\mathcal{B}(f_1 \to 2\rho^0) \ll \mathcal{B}(f_1 \to a_1^{\pm}\pi^{\mp})$
- $f_1 \rightarrow \rho \gamma$: branching ratio + ratio of helicity amps. VES 1995 + ... \longrightarrow mainly sensitive to \mathcal{F}_{a_1} and \mathcal{F}_s

Determination of 3 normalisation constants C_s , C_{a_1} , C_{a_2}

• $e^+e^- \to e^+e^-f_1$: L3 2007

equivalent two-photon decay width

$$\tilde{\Gamma}_{\gamma\gamma} = \lim_{q_1^2 \to 0} \frac{1}{2} \frac{m_{f_1}^2}{q_1^2} \Gamma(f_1 \to \gamma_L^* \gamma_T)$$
$$= \frac{\pi \alpha_{\mathsf{QED}}^2}{48} m_A |\mathcal{F}_s(0,0)|^2$$

+ slope extracted assuming dipole

- $f_1 \to 2(\pi^+\pi^-)$ not useful for TFFs: $\mathcal{B}(f_1 \to 2\rho^0) \ll \mathcal{B}(f_1 \to a_1^{\pm}\pi^{\mp})$
- $f_1 \rightarrow \rho \gamma$: branching ratio + ratio of helicity amps. VES 1995 + ... \longrightarrow mainly sensitive to \mathcal{F}_{a_1} and \mathcal{F}_s
- $\mathcal{B}(f_1 \to e^+e^-) = (5.1^{+3.7}_{-2.7}) \times 10^{-9}$: SND 2020 loop effect, sensitive to all 3 form factors cf. also Rudenko 2017

Why the loop-induced e^+e^- decay is interesting

• compare $\pi^0 \rightarrow e^+e^-$: TFF \longrightarrow double-spectral function

$$\mathcal{A}_{\pi^0 \to e^+ e^-} = \frac{1}{\pi^2} \int_{4M_{\pi}^2}^{\infty} dx \int_{s_{\rm thr}}^{\infty} dy \; \rho(x, y) \; K(x, y)$$

K(x,y): kernel \doteq loop function with VMD form factor, $x, y \doteq M_V^2$ \longrightarrow can be calculated extremely precisely

- Hoferichter, Hoid, BK, Lüdtke 2021
- corresponding expression for $f_1 \rightarrow e^+e^-$:

 $\mathcal{A}_{f_1 \to e^+e^-} = D_1 \times C_{a_1} + D_2 \times C_{a_2} + D_3 \times C_s + D_{\text{asym}}$

 $\rightarrow D_{1/2/3}$ all same magnitude (D_{asym} small)!

Zanke, Hoferichter, BK 2021

f_1 TFFs: couplings, minimal VMD

- C_s well determined from $e^+e^- \rightarrow e^+e^-f_1$
- always two pairs of solutions for C_{a_1}
- extended VMD: C_{a_2} dependence drops out except in $f_1 \rightarrow e^+e^-$

f_1 TFFs: couplings, extended VMD

- C_s well determined from $e^+e^- \rightarrow e^+e^-f_1$
- always two pairs of solutions for C_{a_1}
- extended VMD: C_{a_2} dependence drops out except in $f_1 \rightarrow e^+e^-$

f_1 TFFs: effective form factor

Comparison to effective form factor in $e^+e^- \rightarrow e^+e^-f_1$

- Solution 1 agrees well with L3 dipole fit, Solution 2 doesn't
- extended VMD implies asymptotics with

$$F_{f_1}^{\text{eff}} \Big|_{\widetilde{\text{VMD}}} = \frac{C_s M_{\rho}^2 M_{\rho'}^2}{6m_{f_1}^3} = 95(12) \text{ MeV } \text{ VS. } F_{f_1}^{\text{eff}} \Big|_{\text{L3}} = 86(28) \text{ MeV}$$

compare to $F_{f_1}^{\text{eff}} \Big|_{\text{LCSRs}} = 146(14) \text{ MeV}$ Yang 2007

Comparison to selected models

• Quark model: only $\mathcal{F}_{s}(q_{1}^{2}, q_{2}^{2}) = \frac{C_{s} \times m_{A}^{4}}{(m_{A}^{2} - q_{1}^{2} - q_{2}^{2})^{2}}$ Schuler

Schuler et al. 1998

Roig, Sánchez-Puertas 2020

 \triangleright agrees with asymptotic $1/Q^4$, F_A^{eff} too large doubly-virtually

Resonance chiral theory:

symmetric TFF vanishes at "leading order"

- ▷ antisymm. TFFs: no strict VMD, also direct photon coupling
- Phenomenology: Rudenko 2017; Milstein, Rudenko 2020
 kinematical singularities, complex couplings
- Factorisation: $\mathcal{F}_s(q_1^2, q_2^2) = \frac{C_s \times \Lambda_D^4}{(\Lambda_D^2 q_1^2)^2 (\Lambda_D^2 q_2^2)^2}$ Pauk, Vanderhaeghen 2014

b does not agree with asymptotic constraints

- Holographic models: Leutgeb, Rebhan 2020 \longrightarrow talk A. Rebhan
 - $\triangleright~$ agrees with $1/Q^4$ and $w\mbox{-dependence}$ from $\mbox{Brodsky-Lepage}$
 - \triangleright $F_{f_1}^{\text{eff}}$, C_s reasonable vs. L3, $C_{a_1} = 0$, C_{a_2} small
 - b detailed comparison in intermediate range to be done

Summary / Outlook

Towards the doubly-virtual η transition form factor

- high-precision data on $\eta \to \pi^+\pi^-\gamma$ KLOE and $\eta' \to \pi^+\pi^-\gamma$ BESIII allow for high-precision dispersive predictions of $\eta^{(\prime)} \to \gamma\gamma^*$
- $\pi\pi$ spectra in $e^+e^- \rightarrow \eta\pi^+\pi^-$ BaBar VS. $\eta \rightarrow \pi^+\pi^-\gamma$:
 - ▷ compatible with naïve factorisation
 - ▷ incompatible with dominant left-hand cut
 - \longrightarrow hope for better energy-dependent amplitude analysis

Transition form factors for the $f_1(1285)$

- tensor basis & asymptotics clarified
- experimental data insufficient to disentangle 3 TFFs uniquely
 - \longrightarrow important role of $e^+e^- \rightarrow f_1$ to constrain asymmetric ones