トップクォーク崩壊事象中における Wボゾンのヘリシティー測定

学術創成研究費「タウ・レプトン物理の新展開」評価委員会 2011年3月10日

博士課程 2年

2010年 LHC-ATLAS トップクォーク対事象

- 35pb^-1
- dilepton mode : ee, mumu, emu channel

	Data	BG	Data-BG	Prediction	S/N
ee	16	3.5±1.1	12.5±1.1	11.4 ± 1.4	3.3
μμ	31	7.4±1.9	23.6±1.9	20.1±1.7	2.7
e μ	58	10.8 ± 3.5	47.2±5.3	47.5±4.1	4.4

Channel	Fake	DY	Single top	ww/wz/zz	Ζ(→ττ)
ee	0.8±0.8	1.1±0.5	0.6 ± 0.1	0.5±0.2	0.5±0.3
μμ	0.5 ± 0.6	3.6±1.8	1.3 ± 0.2	0.9 ± 0.3	1.1 ± 0.6
e μ	3.0±2.6	-	2.5±0.4	2.1±0.8	3.2±1.5

この~100事象を用いたトップォークの性質研究

トップクォーク崩壊事象のWボゾンヘリシティ トップクォーク: mass 172 GeV -- 最大質量の素粒子 -> 崩壊事象中に New physics の寄与を期待 SM V-A interaction $\mathscr{L} = -\frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu}(V_L P_L + V_R P_R)tW_{\mu}^{-}$ New $-\frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{m_{W}}(g_{L}P_{L}+g_{R}P_{R})tW_{\mu}^{-}+\text{h.c.},$ physics Contribution from new physics **Right Handed** Longitudinal (0) Left Handed Highly suppressed in SM $F_i = \frac{\Gamma_i}{\Gamma_{e^{II}}} \ (i = L, R, 0)$ SM LO : $F_0 = 0.703, F_L = 0.293, F_R = 3.6 \times 10^{-4}$ CDF II: $F0 = 0.66 \pm 0.16$ (stat) ± 0.05 (syst), $FR = -0.03 \pm 0.06$ (stat) ± 0.03 (syst). arXiv:0811.0344v3 3 学術創成研究費「タウ・レプトン物理の新展開」評価委員会 2011年3月10日

放出角度分布の定量化

z_	3 つの Asymmetry を導入
left-handed longitudinal right-handed sum (SM)	$A_z = \frac{N(\cos \theta > z) - N(\cos \theta < z)}{N(\cos \theta > z) + N(\cos \theta < z)}$
	for $z_{\rm FB}=0, \ z_{\pm}=\mp(2^{2/3}-1)$ (-+0.587)
0.5 1	以上のように定義すると
CosTheta	$A_{\rm FB} = 3/4[F_R - F_L]$
A-	$A_{+} = 3\beta[F_{0} + (1+\beta)F_{R}]$
→ A+	$A_{-} = -3\beta[F_{o} + (1+\beta)F_{L}]$
	$(\beta = 2^{1/3} - 1)$
	$A_{\rm FB} = -0.2225$ $A_{+} = 0.5482$ $A_{-} = -0.8397$
4つの領域のエ	ントリー数を数え上げる

最終目標: Asymmetry -> VL/R, gL/R に制約をつける

崩壊事象の再構成

(1)トップォクーク由来の2本のJet の決定

- 2 leading jets を採用
- Lepton とのペア: 正しいペアの M_lb は小さい傾向

 $\rightarrow m_{l_1,b_1} + m_{l_2,b_2}$ vs $m_{l_1,b_2} + m_{l_2,b_1}$

(2)Neutrino 2本の運動量

トップクォーク,Wボゾン崩壊時のエネルギー保存則 $(E_{l^+}+E_{\nu}+E_b)^2-(p_x^{l^+}+p_x^{\nu}+p_x^b)^2-(p_y^{l^+}+p_y^{\nu}+p_y^b)^2-(p_z^{l^+}+p_z^{\nu}+p_z^b)^2-M_t^2=0$

$$(E_{l^+} + E_{\nu})^2 - (p_x^{l^+} + p_x^{\nu})^2 - (p_y^{l^+} + p_y^{\nu})^2 - (p_z^{l^+} + p_z^{\nu})^2 - M_{\mathrm{W}^+}^2 = 0$$

Transverse plane での運動量保存則

$$p_x^b + p_x^{\overline{b}} + p_x^\nu + p_x^{\overline{\nu}} + p_x^l + p_x^{\overline{l}} = 0$$

top mass: 172.5 +- 15 GeV, 1.5 GeV刻みで解を探す

解が見つからない場合(1)のもう一つのペアも試す

Cos Theta 分布

# of ttbar events	e/e	mu/mu	e/mu
data	7	23	41
MC all	10.5	19.5	43.3
Signal MC	8.4	16.5	37.8
Z+Jets BG	1.4	1.8	2.6

signal = data - MC background

CosTheta 分布ヘバイアス

実験から Cos theta へのバイアス

- Trigger
- Selection
- Reconstruction.

Signal MC を用いたバイアスの理解

- ケース: "lepton Pt > 20GeV" の要求

CosTheta 分布ヘバイアス

- ケース: lepton に対する "Isolation" の要求

"muonの近傍 $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.3$ でのカロリメータへの

Energy deposit が 4GeV 以下"

CosTheta 分布ヘバイアス

- ケース: 事象再構成

今後は

- 定量的な理解,評価

- バイアスを個々の要素に分解し、データに基づいた補正手法の確立

Cos Theta 補正関数

SM MC を用いて補正関数を作成

→データの Cos Theta 分布を補正、測定 さらに測定結果から 補正関数を作り直す

→ self consistent になるまで繰り返す

測定結果と系統誤差

	Afb	A+	A-				
ee	0.27±0.37±0.21	$0.49 \pm 0.31 \pm 0.15$	-0.67±0.33±0.20				
mumu	-0.03±0.17±0.13	0.68±0.11±0.10	-0.80±0.11±0.09				
e/mu	-0.25±0.13±0.16	0.52±0.11±0.13	-0.88±0.07±0.08				
SM	-0.2225	0.5482	-0.8397				

 $(\pm stat. \pm syst.)$

主なSystematic error

MC から生じる不定性

- Signal の CosTheta 分布の違い

-> 補正関数に影響

- BG の量、CosTheta 分布

2011年の展望

- 11年: < 2fb^-1 のデータが期待できる

1 fb^-1 相当 MC dataset での測定結果分布: dimuon channel

- 統計の観点では 単独 ch でも0.04 以下の感度で測定可能
- 系統誤差を引き下げる事が重要

- data-driven でのBG, CosTheta 分布へのバイアス評価

まとめと今後

- トップクォーク崩壊事象中でのWボソンヘリシティ測定
 - 35pb^-1, di-lepton mode に着目
- ・測定の基礎部分を確立
 - ・ 事象選別→再構成→Asymmetry 測定、の一連の解析
- 2011年
 - 1fb^-1のデータを用いれば 統計誤差 0.04 での精度で測定が可能
 - Tevatron 測定結果の更新を目標に
 系統誤差を下げるべく Background の評価、解析手法の改善を行う

systematics

Source	ee			μμ			еµ		
	A _{FB}	<i>A</i> ₊	A _	A _{FB}	A ₊	A_{-}	A _{FB}	<i>A</i> ₊	A _
Lepton SF	0.039	0.009	0.072	0.008	0.004	0.002	0.008	0.008	0.014
Lepton resolution	0.044	0.025	0.043	0.007	0.013	0.023	0.011	0.015	0.007
Lepton energy scale	0.042	0.022	0.059	0.003	0.003	0.002	0.009	0.014	0.015
JES	0.008	0.018	0.021	0.002	0.001	0.000	0.010	0.014	0.003
JER	0.004	0.008	0.010	0.001	0.000	0.000	0.005	0.006	0.004
Jet reconstr. eff.	0.009	0.014	0.009	0.001	0.001	0.000	0.004	0.007	0.001
Top mass (±1.1 GeV)	0.023	0.008	0.023	0.022	0.012	0.017	0.034	0.012	0.016
ISR/FSR	0.097	0.061	0.093	0.086	0.019	0.080	0.061	0.059	0.041
Showering/Hadronisation	0.138	0.120	0.007	0.063	0.095	0.002	0.013	0.011	0.002
MC Generators	0.072	0.030	0.064	0.039	0.000	0.000	0.048	0.021	0.050
Diboson norm. (5%)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Single top norm. (10%)	0.001	0.001	0.002	0.001	0.001	0.000	0.000	0.001	0.001
Z + Jet shape	0.080	0.054	0.013	0.055	0.017	0.024	0.043	0.033	0.002
Luminosity	0.004	0.002	0.002	0.002	0.002	0.000	0.002	0.003	0.000
Total systematic uncertainty	0.213	0.154	0.204	0.129	0.100	0.088	0.098	0.078	0.070

Reconstructed cos theta

Truth information in reconstruction

Neutrinos Pt inner product

in the case of 70%, we succeed to obtain the correct one

In Total...

Missing Et

 MissEt は二つの ニュートリノ Pt の(ベクトル)和なので CosTheta の MissEt > 30GeV カットへの効きは弱い。

Jets cut

▶ 期待通り関係ない

Trigger requirement

requirement : EF_mu10_MSonly (TopInputs, for MC)

トリガーも、二本のµのどちらかが掛かればいいので緩い。

Muon Selection (1/2)

Opposite sign

+ |Eta|<2.5

+ |Pt| < 20 GeV

Muon Selection (2/2)

+ | Pt | < 20 GeV

$$\cos \theta = -1$$

$$\underbrace{b \quad \mu}_{b \quad \nu} W \quad \nu$$

Missing Et

$$\underbrace{b \quad \mu}{\bullet \quad \nu} \xrightarrow{\nu} \\ \bullet \quad \cdots \\ \bullet \quad \quad$$

Cos Theta vs Muon Pt

Recon CosTheta

