Improved analysis of the CLFV decay of muonic atoms $\mu^-e^- \rightarrow e^-e^-$

Yuichi Uesaka¹, Masafumi Koike², Yoshitaka Kuno¹, Joe Sato³, Toru Sato¹, and Masato Yamanaka⁴ Osaka Univ.¹, Utsunomiya Univ.², Saitama Univ.³, and Nagoya Univ.⁴

Purpose The quantitative estimation for $\mu^-e^- \rightarrow e^-e^-$ in a muonic atom

Formalism
Effective Lagrangian :
$$\mathcal{L}_I = \mathcal{L}_{contact} + \mathcal{L}_{photonic}$$

 $\mathcal{L}_{contact} = -\frac{4G_F}{\sqrt{2}} [g_1(\overline{\mu_R}e_L)(\overline{e_R}e_L) + \cdots]$

(In this presentation, we restrict ourselves to contact interactions.)

Previous work Koike *et al.* Phys. Rev. Lett. **105**, 121601(2010)

$$\Gamma_{CLFV} = \sigma_{\mu e \to e e} v_{rel} |\psi_e(0)|^2$$

approximations

- 1. Bohr radius of bound $\mu^- >>$ wave length of emitted e^-
- 2. Emitted electrons : plane-wave
- 3. Bound leptons : non-relativistic
- 4. Nuclear Coulomb potential : point nuclear charge distribution

• Relativistic effects on a bound electron \checkmark Finite nuclear size is also impotant 10⁻¹⁷ but reduce Γ .

Branching Ratio

• required muonic atoms for ²⁰⁸Pb $> (3.3 \times 10^{-18})^{-1} = 3.0 \times 10^{17}$

- symmetric for two emitted *e*⁻s
- width ~ 20 MeV for 208 Pb due to momentum distribution of a bound muon

 $Br(\mu^-e^- \rightarrow e^-e^-)$

- $\psi_{E_1}^e, \psi_{E_2}^e \rightarrow \underline{\text{distorted by Coulomb potential}}$ $\psi_B^\mu, \psi_B^e \rightarrow \underline{\text{relativistic}}$
- Nuclear Coulomb potential : uniform nuclear charge distribution

Summary

We estimated the decay rate of the contact CLFV interaction and showed that it gets larger than the previous estimation.

Important effects • Distortion of emitted electrons

• Relativistic effects on a bound electron

• Finite nuclear charge distribution

Future work

 analysis of long-range photon exchange CLFV interaction find signal to discriminate CLFV interactions

e.g. energy and angular distribution of emitted electrons