Search for µ-e Conversion With DeeMe Experiment at J-PARC MLF

Nguyen Minh Truong, on behalf of DeeMe Collaboration

Osaka University, Department of Physics (http://deeme.hep.sci.osaka-u.ac.jp/) FPCP 2015 Nagoya University, Japan, May 25 - 29, 2015

μ-e Conversion? In Standard Model of particle physics Nucleus Muon capture: $\mu^- + (A, Z) \rightarrow v_{\mu} + (A, Z-1)$ Muon Decay in Orbit (DIO) μ trapped in the atomic orbit $\mu^- \rightarrow e^- v \overline{v}$ → Muonic Atom (1s)

Beyond the Standard Model

μ-e Conversion

 $\mu^{-} + (A, Z) \rightarrow e^{-} + (A, Z)$

- One of charged-Lepton Flavor Violation
- SUSY-GUT, SUSY-seesaw: BR($\mu \rightarrow e$) $\leq 10^{-14}$
- Powerful probe to search for new physics
- Mono energy, not mix with background as $\mu^{\pm} \rightarrow e^{\pm} \gamma \& \mu^{\pm} \rightarrow e^{\pm}e^{+}e^{-}$

μ-e conversion has not been discovered yet Current upper limits

 $BR(\mu^{-} + Au \rightarrow e^{-} + Au) < 7 \times 10^{-13} \text{ at SINDRUM II}$ $BR(\mu^{-} + Ti \rightarrow e^{-} + Ti) < 4.3 \times 10^{-12} \text{ at TRIUMF}$

=> Need new experiments

DeeMe - A new-method experiment

- Pions are produced
- Beam-line for π μ transport
- Muons stop in muon target
- Muons are trapped in the atomic orbit and forms muonic atoms
- Muon to electron conversion may occur in a muonic atom
- Beam-line for electrons transfer
- obtained directly from a muon and time for experiment
- Low momentum background are reduced by momentum selection in the secondary beam line \rightarrow Neither Michel electrons nor protons hit detectors: very small detector rate

LINAC 3GeV Pulsed proton beam 1MW Fast extraction 600ns 40ms

magnet HQ1,2,3 H-Line, a general purpose beam-line, can be used for other experiments for fundamental

Tracker

4 MPWCs

PACMAN

muon physics: MuSIUM(precision

measurement of muonium HFS), g-2/EDM, etc/ H-Line acceptance

Control background in DeeMe

electron is emitted and transfer through H-Line • Use delayed electron to analysis data → remove prompt burst background

After-Proton Prompt burst background background Threshold Electron come Time to tracker 1µs analysis 70µs 10µs

• Use real data to estimate after-proton background

300ns

- Record detector signal before main pulse 70µs and 10µs after proton hit target
- Signal before beam extraction and after-proton background have same mechanism – they come from beam halo
- Measure signal before beam extraction and compare with beam lost monitor data in RCS → estimate after-proton background more exactly
- Small duty factor of detector live time ~1/20000
- reduce effect come from cosmic rays background
- longer time region to experimentally-monitor the cosmic rays background by using self trigger

Sensitivity and Background

Single Event Sensitivity estimated by Monte Carlo study

> 2 × 10 ⁻¹⁴ for SiC target 1×10^{-13} for C target (Running time $2x10^7$ s)

Background estimation

- DIO: 0.09
 - Ee < 102 MeV, Prob(Ec>102.5 MeV) $< 10^{-14}$
 - Tracker's momentum resolution: $\Delta P < 1 \text{MeV/c (FWHM)} \rightarrow \text{DIO distinguish with}$ µ - e coversion signal
- After-proton rate $R_{AP} < 10^{-18} \rightarrow After-proton background < 0.027 (0.05 90% C.L.)$ (see Nagao's poster)
- Cosmic rays induced e < 0.018, μ < 0.001, \rightarrow will be suppressed by duty factor

Summary

- μ e conversion is a powerful tool to search for new physics
- DeeMe experiment will search for μ e conversion at sensitivity 10^{-14}
- Development of tracker system has completed (see Teshima's poster)
- The graphite target has already installed
- Upstream-half of H-Line has constructed. The construction of downstream half will come • Data taking in 2016 in a year.