DeeMe – Experiment to search for muon to electron conversion at J-PARC MLF

After Proton background estimation

D.Nagao, M.Aoki, M.Kinsho^B, Y.Nakatsugawa^C, P.Saha^B, Y.Seiya^A, K.Yamamoto^B, K.Yamamoto^A, and DeeMe Collaboration
Osaka Univ., Osaka City Univ.^A, JAEA^B, KEK^C

Introduction

Muon to electron conversion is one of the charged lepton flavor violation (cLFV).

- > cLFV is forbidden in the Standard Model.
- > Some theories beyond the Standard Model predict μ -e conversion signature at the branching ratio level of ~10⁻¹⁴.

DeeMe is an experiment searching for µ-e conversion.

- A single event sensitivity of <u>2x10⁻¹⁴(silicon carbide target)</u>
- Being constructed at J-PARC, MLF
- 3-GeV 25Hz pulsed proton beam from Rapid Cycling Synchrotron (RCS)

Extraction

= ON

Kicker magnets

After Proton

After Proton(AP) = Delayed proton

Proton beam produces a lot of prompt electrons.

- Possibility of delayed proton approach in the measurement time
- Overlapping the signal region (102–105MeV/c)
 - AP doesn't exist in principle because of RCS feature.
 - High-Intensity Proton Ring
 - ➤ Large aperture of RCS to avoid radio-activation of the ring equipment
 - Large kicker angle to be extracted
 - Fast extraction
 - ➤ No protons in RCS ring after extraction

To RCS

After extraction

No protons

(in principle)

Kicker magnets

= OFF

AP counter

AP background isn't able to be distinguished by measurement time or momentum measurement.

➤ Measurement with <u>beam loss monitor (BLM)</u> at RCS tunnel

From the past study,

- AP is proportional to hit of this counter
- The coefficient is estimated at ~40 by Monte Carlo simulation.
- The rate of AP $< 2.2 \times 10^{-18}$, and AP background < 0.04 event / year
 - It's small enough to treat as background, but not small enough to ignore
- The time spectrum of hit of AP counter could be fitted as <u>decay of rest muon</u> (Michel decay: <53MeV)
 - possibility that positrons become the background of AP measurement

It will improve AP and positron identification.

Accelerating

= OFF

proton beam

From RCS

Kicker magnets

To MLF

Design of New AP Counter

Simulated by G4beamline sandwich calorimeter of plastic scintillators and lead layers.

efficiency of e+

0.15

- Positron : Edep < 0.3MeV in most event
- Proton : Edep > 1MeV

Coincidence

- <- efficiency vs threshold
- Suppression of the Michel electron ~10⁻⁴ (10⁻² increase)
- Efficiency of 3-GeV proton is ~0.95

Setup was completed

Taking and analyzing data

Summary

- DeeMe is an experiment searching for muon to electron conversion.
 - After Proton background
 - \rightarrow AP rate < 2 x 10⁻¹⁸
 - > It's small enough to treat background, but not negligible.
 - > Delayed electrons hit the BLM

- New AP counter can decrease Michel e+
 - ➤ Suppression of e+ will be ~10⁻⁵
 - Installed in RCS
 - Analyzing the data

