
Mini-workshop on $\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}$ March 27, 2017

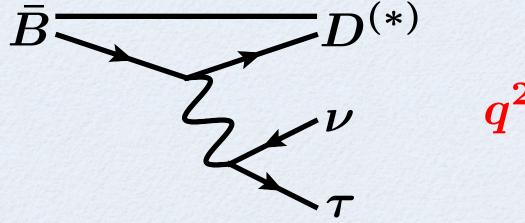
Three ways of $egin{array}{c} \mbox{of} \mbox{probing NP in } ar{B} ightarrow D^{(*)} au ar{ u} \end{array}$

Ryoutaro Watanabe (U. Montréal)

based on arXiv:1412.3761, 1603.05248, 1609.09078

How can we probe NP in this process?

Three possible ways


- [1] measuring distributions
- [2] detecting collider signals
- [3] looking at correlations with other processes

[1] Distributions

arXiv:1412.3761

Usage:

Distinguish NP type by looking at difference in shape of q^2 distribution

 $q^2 = (p_B - p_{D^{(*)}})^2$

[Distributions]

Possible NP scenario :

$$\mathcal{L}_{\text{eff}}^{\text{NP}} \equiv -2\sqrt{2}G_F V_{cb} \, \mathcal{C}_{\text{NP}} \mathcal{O}_{\text{NP}}$$

Vector (W' vector, Vector Leptoquark)

$${\cal O}_{m V_1}=(ar c\gamma^\mu P_Lb)(ar au\gamma_\mu P_L
u)~~\left/~~{\cal O}_{m V_2}=(ar c\gamma^\mu P_Rb)(ar au\gamma_\mu P_L
u)$$

Scalar (Charged Higgs, Scalar Leptoquark)

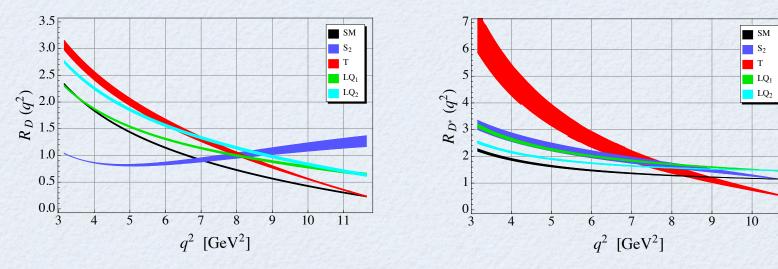
Tensor

$$\mathcal{O}_{\mathbf{T}} = (\bar{c}\sigma^{\mu
u}P_Lb)(\bar{\tau}\sigma_{\mu
u}P_L
u)$$

"LQ specific" combination

 $C_{\mathbf{LQ}_1} \equiv C_{S_2} = +4C_T \quad / \quad C_{\mathbf{LQ}_2} \equiv C_{S_2} = -4C_T$

[Distributions]


TEST

- Assumption : The current deviations in $R_{D^{(st)}}$ remain in future
- Question : "When" can we probe NP at Belle2 experiment ?
- Approach :

Evaluate required Belle2 luminosity so that NP can be distinguished with 95%CL

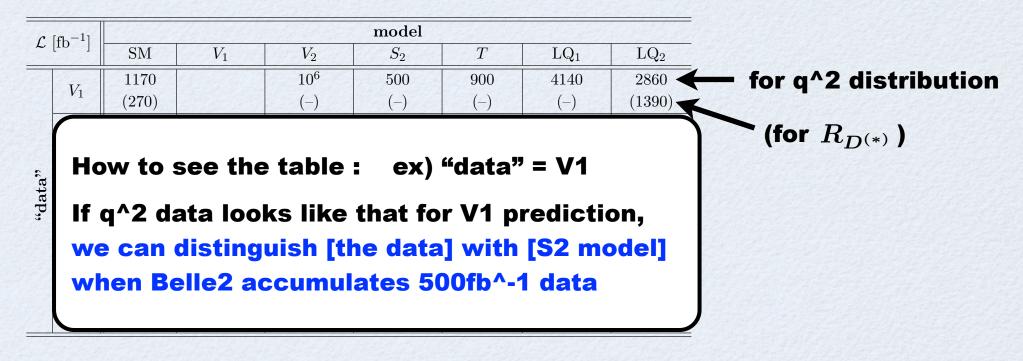
(Image)

Distributions for the case that $C_{\rm NP}$ = best fitted to the current results of $R_{D^{(*)}}$

[Distributions] TEST

• Result :

$\mathcal{L} ~[{ m fb}^{-1}]$		model							
		SM	V_1	V_2	S_2	Т	LQ ₁	LQ_2	
"data"	V1	1170		10^{6}	500	900	4140	2860	- for q ² distribution (for $R_{D^{(*)}}$)
		(270)		(-)	(-)	(-)	(-)	(1390)	
	V_2	1140	10^{6}		510	910	4210	3370	
		(270)	(-)	State States	(-)	(-)	(-)	(1960)	
	S_2	560	560	540	Sec. A.	380	1310	730	
		(290)	(13750)	(36450)		(-)	(35720)	(4720)	
	Т	600	680	700	320	and the second	620	550	
		(270)	(-)	(-)	(-)	125-24	(-)	(1980)	
	LQ ₁	1010	4820	4650	1510	800	1111111	5920	
		(270)	(-)	(-)	(-)	(-)		(1940)	
	LQ_2	1020	3420	3990	1040	650	5930		
		(250)	(1320)	(1820)	(20560)	(4110)	(1860)		

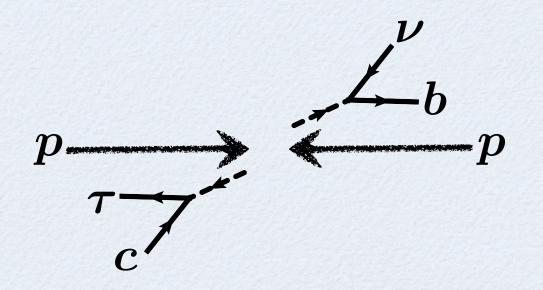

[Distributions] TEST

• Result :

[Distributions] TEST

• Result :

• Found :


Measuring q^2 distribution with ~5ab^-1 can identify NP type for almost all cases

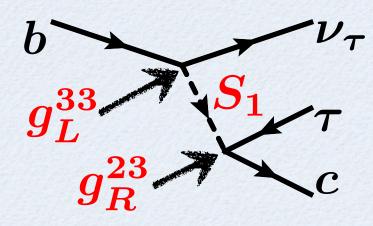
[2] Collider signal

arXiv: 1603.05248

Usage:

Directly detect NP signal at LHC, consistent with the $R_{D^{(*)}}$ anomaly

Model dependent


[Collider signal]

Scalar Leptoquark

• Lagrangian

$$\mathcal{L}_{\mathrm{LQ}} = \left(\boldsymbol{g_L^{ij}} \, \overline{Q}_L^{c,i} (i\sigma_2) L_L^j + \boldsymbol{g_R^{ij}} \, \overline{u}_R^{c,i} \ell_R^j
ight) \boldsymbol{S_1}$$

 $m{\cdot}\,ar{B} o D^{(*)} auar{
u}$

Minimum setup to address the anomaly :

$$rac{g_L^{33} g_R^{23*}}{M_{S_1}^2} \simeq -0.5\,C_{
m SM}$$

$$\left(C_{ ext{SM}}=2\sqrt{2}G_FV_{cb}
ight)$$

Decay process

$$g_L^{33}: S_1 o b
u_ au, t au \quad g_R^{23}: S_1 o c au$$

[Collider signal]

LQ production at the LHC

Pair production due to QCD

 $\sigma \sim 10 \, {
m fb}$ (for $M_{S_1} = 1 \, {
m TeV}$) (independent of $g_{L,R}$)

Possible signal pattern

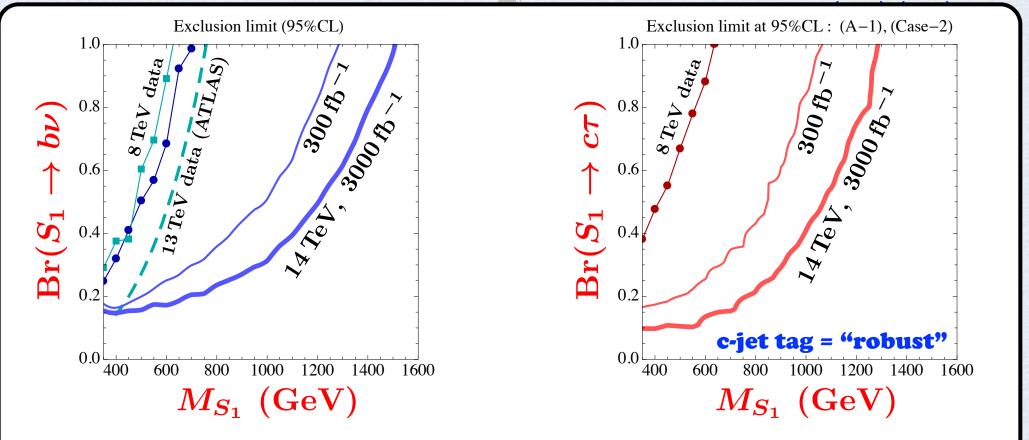
$$pp
ightarrow S_1 S_1^*
ightarrow \begin{cases} (t au)(t au) \ (b
u)(b
u) \ (c au)(c au) \end{cases}$$

 \vdots

 $for these two signals are available$

Just follow the same analyses for the case of $M_{\tilde{\chi}^0_1}=0$ (CT)(CT)LQ search by $(b\tau)(b\tau)$ can be referred [CMS, arXiv:1408.0806]

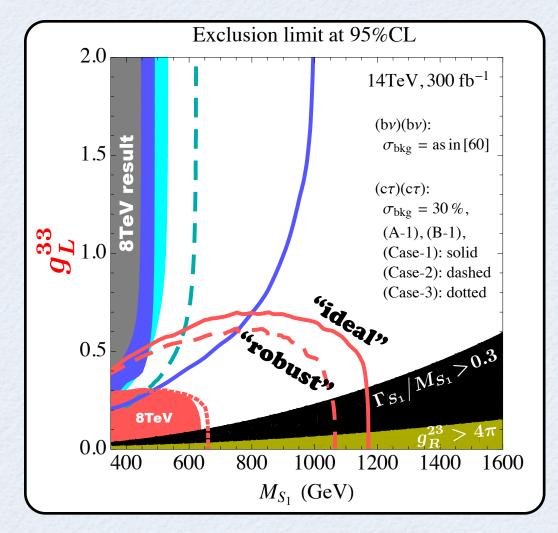
c-jet tagging rate has to be implemented "ideal" [arXiv:1505.06689] $\epsilon_{c \rightarrow c} = 50\%, \ \epsilon_{b \rightarrow c} = 20\%, \ \epsilon_{\text{light} \rightarrow c} = 0.5\%$ "robust" [arXiv:1501.01325] $\epsilon_{c \rightarrow c} = 19\%, \ \epsilon_{b \rightarrow c} = 13\%, \ \epsilon_{\text{light} \rightarrow c} = 0.5\%$ "another" [ATLAS-PHYS-2015-001]


 $\epsilon_{c \to c} = 40\%, \ \epsilon_{b \to c} = 25\%, \ \epsilon_{\mathrm{light} \to c} = 10\%$

[Collider signal]

Detailed cut analyses

(b u)(b u)



How can we confirm the $R_{D^{(*)}}$ anomaly ?

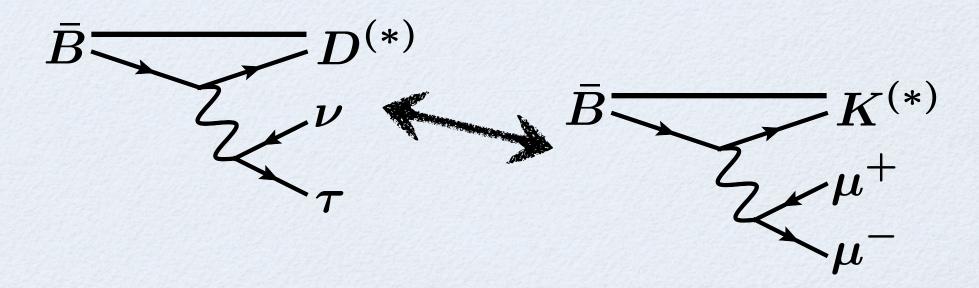
[Collider signal]

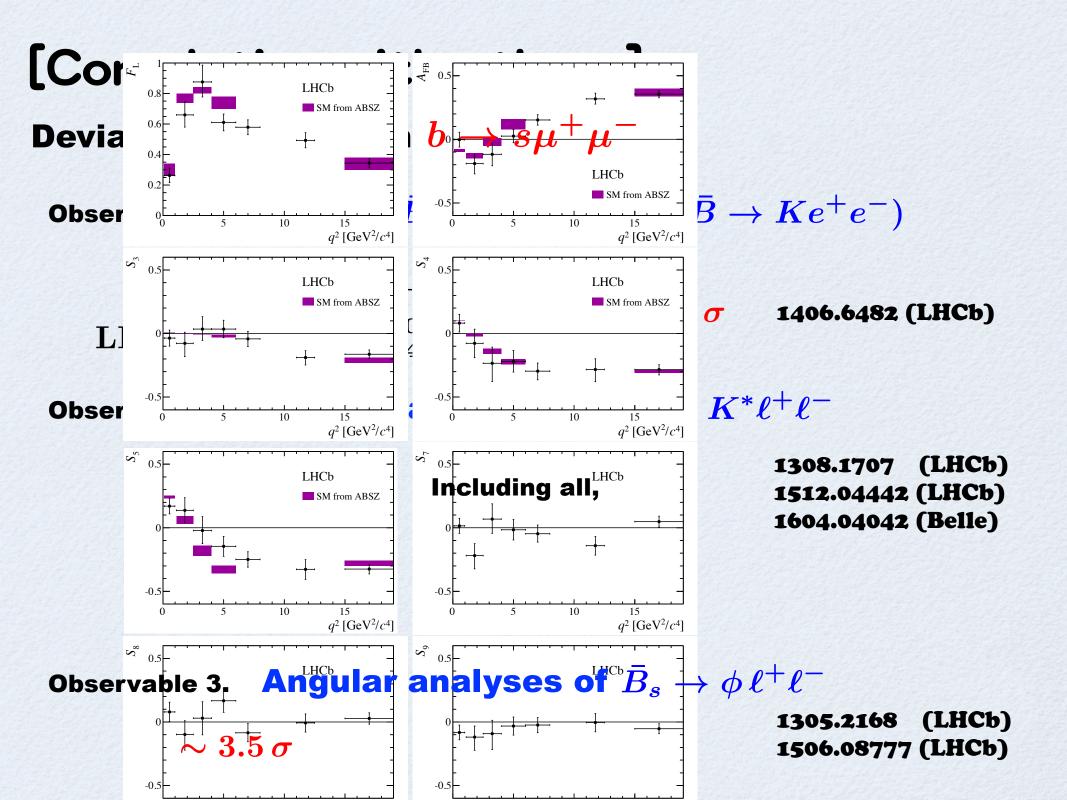
Collider limit with respect to the B anomaly

 \cdot Condition : $g_R^{23*} \simeq -0.5 \, C_{
m SM} M_{S_1}^2 / g_L^{33}$

Blue : $pp \to S_1 S_1^* \to (b\nu)(\bar{b}\bar{\nu})$ Red : $pp \to S_1 S_1^* \to (c\tau)(\bar{c}\bar{\tau})$

- c-jet tagging is significant to search S1 leptoquark motivated by R(D(*))
- Improvement of c-tagging is still significant


 $\lesssim 800 \, GeV \,$ Scalar-LQ (explaining the anomaly) can be probed at the LHC


[3] Correlation

arXiv: 1609.09078

Usage:

Identify NP model by looking at correlations with other processes

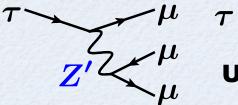
Viable explanation to address the two anomalies

$${\cal L}_{
m NP} = {{g_q g_\ell}\over \Lambda_{
m NP}^2} \left[ar Q_L^3 \gamma_\mu(\sigma^I) Q_L^3
ight] \left[ar L_L^3 \gamma^\mu(\sigma^I) L_L^3
ight]$$

Third generation LH fermions:
$$~Q_L^3=egin{pmatrix} t_L\ b_L\end{pmatrix}~,~~L_L^3=egin{pmatrix}
u_{ au L}\ au_L\end{pmatrix}$$

2-3 mixings are realized at mass eigenstate:

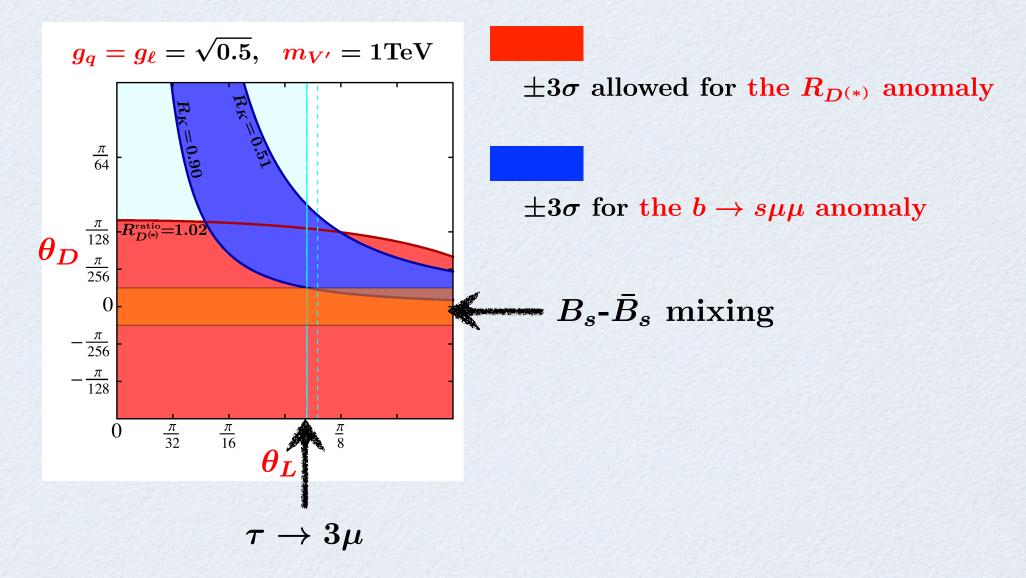
$$\begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix}_{\text{gauge}} \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_D & \sin \theta_D \\ 0 & -\sin \theta_D & \cos \theta_D \end{pmatrix} \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix}_{\text{mass}}$$
$$\begin{pmatrix} e_L \\ \mu_L \\ \tau_L \end{pmatrix}_{\text{gauge}} \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_L & \sin \theta_L \\ 0 & -\sin \theta_L & \cos \theta_L \end{pmatrix} \begin{pmatrix} e_L \\ \mu_L \\ \tau_L \end{pmatrix}_{\text{mass}}$$


Mixing structure correlates the processes

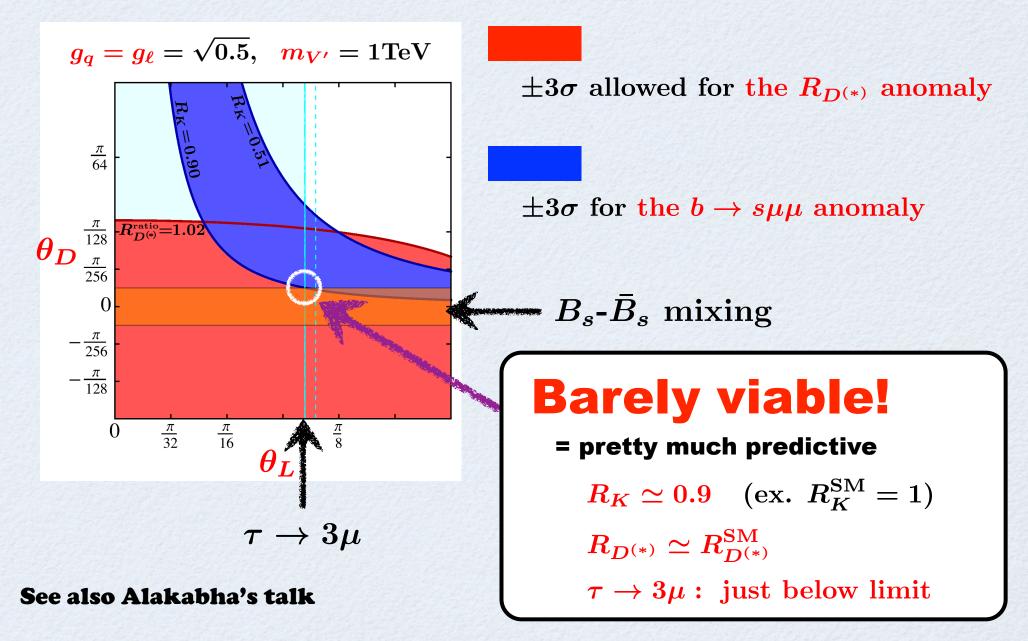
 $\mathcal{L}^{\text{eff}} \supset -\frac{g_q g_\ell}{m_{V'}^2} \sin \theta_D \cos \theta_D \sin^2 \theta_L (\bar{s}_L \gamma_\mu b_L) (\bar{\mu}_L \gamma^\mu \mu_L)$ $+ 2V_{cs} \frac{g_q g_\ell}{m_{V'}^2} \sin \theta_D \cos \theta_D \cos^2 \theta_L (\bar{c}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma^\mu \nu_L)$ $+ \cdots$

Mixing structure correlates the processes

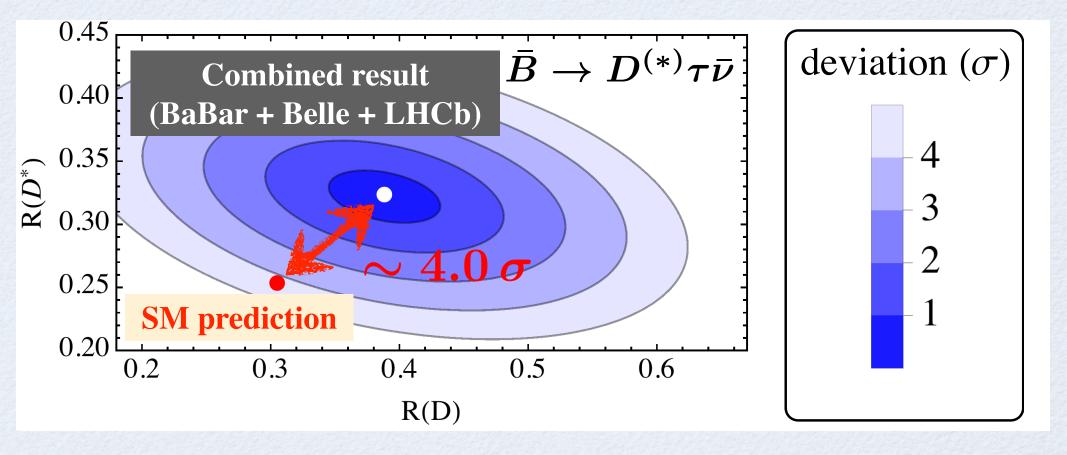
$$egin{aligned} \mathcal{L}^{ ext{eff}} &\supset & -rac{g_q g_\ell}{m_{V'}^2} \sin heta_D \cos heta_D \sin^2 heta_L \, (ar{s}_L \gamma_\mu b_L) (ar{\mu}_L \gamma^\mu \mu_L) \ &+ 2 V_{cs} rac{g_q g_\ell}{m_{V'}^2} \sin heta_D \cos heta_D \cos^2 heta_L \, (ar{c}_L \gamma_\mu b_L) (ar{ au}_L \gamma^\mu
u_L) \ &+ \cdots \end{aligned}$$


Significant constraints

 $\tau \longrightarrow \mu$ $\tau \to 3\mu$ [PD $Z' \swarrow \mu$ Upper limit of Br : Br < 2.1 × 10⁻⁸ (90%CL) [PDG 2016]


 $\bigvee_{s}^{Z'} igg(b \ Mass difference of Bs: \Delta M_s = (17.76 \pm 0.02) \, {
m ps}^{-1}$ [PDG 2016]

Constraints = Prediction

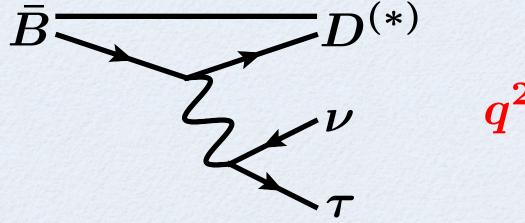


See also Alakabha's talk

Constraints = Prediction

How can we probe NP in this process?

Three possible ways

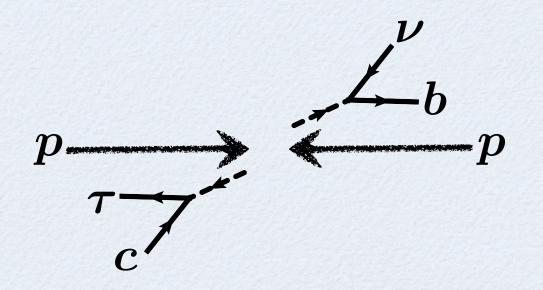

- [1] measuring distributions
- [2] detecting collider signals
- [3] looking at correlations with other processes

[1] Distributions

arXiv:1412.3761

Usage:

Distinguish NP type by looking at difference in shape of q^2 distribution


 $q^2 = (p_B - p_{D^{(*)}})^2$

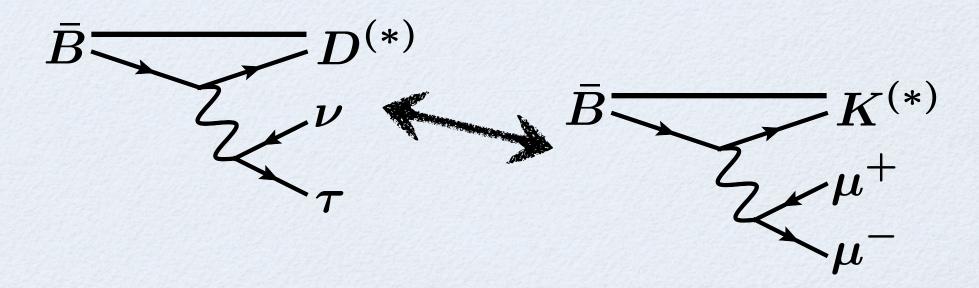
[2] Collider signal

arXiv: 1603.05248

Usage:

Directly detect NP signal at LHC, consistent with the $R_{D^{(*)}}$ anomaly

Model dependent



[3] Correlation

arXiv: 1609.09078

Usage:

Identify NP model by looking at correlations with other processes

