Narrow resonances in hadronic light-by-light scattering

Peter Stoffer

Faculty of Physics, University of Vienna

July 1, 2021

Muon g-2 theory initiative workshop in memoriam of Simon Eidelman KEK and Nagoya University

- 2 Narrow resonances in a dispersive approach
- 3 Asymptotic behavior
- 4 Scalar contributions
- 5 Axial-vector and tensor mesons
- 6 Conclusions and outlook

- 2 Narrow resonances in a dispersive approach
- 3 Asymptotic behavior
- 4 Scalar contributions
- 5 Axial-vector and tensor mesons
- 6 Conclusions and outlook

Analytic HLbL estimate in the White Paper (WP)

 \rightarrow T. Aoyama et al., Phys. Rept. 887 (2020) 1-166

	$10^{11} \times a_{\mu}$	$10^{11} \times \Delta a_{\mu}$
π^0, η, η' -poles	93.8	4.0
pion/kaon box	-16.4	0.2
S-wave $\pi\pi$ rescattering	$^{-8}$	1
scalars, tensors	-1	3
axials	6	6
light quarks, short distance	15	10
c-loop	3	1
HLbL total (LO)	92	19

Analytic HLbL estimate in the White Paper (WP)

 \rightarrow T. Aoyama et al., Phys. Rept. 887 (2020) 1-166

	$10^{11} \times a_{\mu}$	$10^{11} \times \Delta a_{\mu}$
$\pi^0 = n'$ -poles	03.8	4.0
n', η, η -poles	-16 4	4.0
S-wave $\pi\pi$ rescattering	-8	1
scalars, tensors	-1	3
axials	6	6
light quarks, short distance	15	10
c-loop	3	1
HLbL total (LO)	92	19

HLbL contribution of higher resonances

WP estimate based on different models:

scalar meson contribution:

Introduction

- \rightarrow V. Pauk, M. Vanderhaeghen (2014) $a_{\mu}^{scalars} = [-3.1(8), -0.9(2)] \times 10^{-11}$
- \rightarrow M. Knecht et al. (2018) $a_{\mu}^{\text{scalars}} = [-(2.2^{+3.2}_{-0.7}), -(1.0^{+2.0}_{-0.4})] \times 10^{-11}$
- tensor meson contribution:
 - \rightarrow I. Danilkin, M. Vanderhaeghen (2017)
- axial-vector meson contribution:
 - \rightarrow V. Pauk, M. Vanderhaeghen (2014)
 - \rightarrow F. Jegerlehner (2017)
 - \rightarrow P. Roig, P. Sánchez-Puertas (2020)
- $\begin{aligned} a_{\mu}^{\text{axials}}[f_{1},f_{1}'] &= 6.4(2.0) \times 10^{-11} \\ a_{\mu}^{\text{axials}}[a_{1},f_{1},f_{1}'] &= 7.6(2.7) \times 10^{-11} \\ a_{\mu}^{\text{axials}}[a_{1},f_{1},f_{1}'] &= (0.8^{+3.5}_{-0.8}) \times 10^{-11} \end{aligned}$
- axial-vector contribution in interplay with short-distance constraints (SDCs):
 - \rightarrow J. Leutgeb, A. Rebhan (2020)
 - \rightarrow L. Cappiello et al. (2020)

$$a_{\mu}^{\text{axials}}[a_1, f_1, f_1'] = 17.4(4.0) \times 10^{-11}$$

↔ "data-driven", adjusted normalization (52% saturation of LSDC)

 $a_{\mu}^{\text{tensors}} = 0.9(1) \times 10^{-11}$

How to improve WP estimate of resonances?

- how to reduce model uncertainties?
- consistent inclusion in dispersive framework?
- short-distance constraints?
- beyond narrow resonances?

1 Introduction

2 Narrow resonances in a dispersive approach

- 3 Asymptotic behavior
- 4 Scalar contributions
- 5 Axial-vector and tensor mesons
- 6 Conclusions and outlook

Resonance contributions to HLbL

- unitarity: resonances unstable, not asymptotic states
 ⇒ do not show up in unitarity relation
- analyticity: resonances are poles on unphysical Riemann sheets of partial-wave amplitudes

 \Rightarrow describe in terms of multi-particle intermediate states that generate the branch cut

- realistic in the case of resonant $\pi\pi$ contributions in *S*-wave (f_0) and *D*-wave (f_2)
- axial-vector mesons would appear as resonance in 3π channel ⇒ need to rely on narrow-width (NW) approximation

Narrow resonances

 in the NW limit, imaginary part from unitarity relation reduces to δ-function:

$$\mathrm{Im}_{s}\Pi^{\mu\nu\lambda\sigma} = \pi\delta(s-M^{2})\mathcal{M}^{\mu\nu}(p\to q_{1},q_{2})^{*}\mathcal{M}^{\lambda\sigma}(p\to -q_{3},q_{4}),$$
$$\mathcal{M}^{\mu\nu}(p\to q_{1},q_{2}) = i\int d^{4}x e^{iq_{1}\cdot x} \langle 0|T\{j_{\mathrm{em}}^{\mu}(x)j_{\mathrm{em}}^{\nu}(0)\}|p\rangle$$

 project onto tensor decomposition for HLbL and plug into dispersion relation for scalar functions:

$$\check{\Pi}_i(s) = \frac{1}{\pi} \int ds' \frac{\mathrm{Im}\check{\Pi}_i(s')}{s'-s}$$

- δ -function, Cauchy kernel, and polarization sum combine to propagator-like structure
- dispersive result may differ from propagator models by non-pole terms

Narrow resonances

- decompose *M^{μν}* into Lorentz structures × transition form factors (TFFs)
- in the NWA, dispersive definition only involves on-shell meson ⇒ only physical TFFs enter

Sum rules and basis (in)dependence

- HLbL tensor basis involves structures of different mass dimension
- scalar coefficient functions of higher-dimension structures asymptotically fall off faster
- implies sum rules for those coefficient functions:

$$0 = \frac{1}{\pi} \int ds' \, \mathrm{Im}\check{\Pi}_i(s')$$

guarantees basis independence of entire HLbL

Sum rules and basis (in)dependence

• sum-rule contribution of single-particle state (resonance):

$$\operatorname{Im}\check{\Pi}_{i}(s') \sim \pi \delta(s' - M^{2}) \mathcal{F}(q_{1}^{2}, q_{2}^{2}) \mathcal{F}(q_{3}^{2}, 0)$$
$$\Rightarrow \frac{1}{\pi} \int ds' \operatorname{Im}\check{\Pi}_{i}(s') \sim \mathcal{F}(q_{1}^{2}, q_{2}^{2}) \mathcal{F}(q_{3}^{2}, 0) \neq 0$$

- sum rules not fulfilled by resonances
 - \Rightarrow NW contribution to HLbL is **basis dependent**
- basis dependence only needs to cancel in sum over intermediate states
- only pseudoscalars do not contribute to sum rules
 ⇒ unambiguous

Kinematic singularities

- HLbL coefficient functions Π_i free from kinematic singularities in Mandelstam variables \Rightarrow enables dispersive treatment \rightarrow Colangelo, Hoferichter, Procura, Stoffer, JHEP 04 (2017) 161
- not free from kinematic singularities in q_i^2 , but **residues** vanish due to sum rules
- kinematic singularities can be subtracted, but introduce additional ambiguities if sum rules are violated

Introduction

2 Narrow resonances in a dispersive approach

3 Asymptotic behavior

- 4 Scalar contributions
- 5 Axial-vector and tensor mesons
- 6 Conclusions and outlook

Light-cone expansion for TFFs

- \rightarrow Hoferichter, Stoffer, JHEP **05** (2020) 159
- tensor decomposition for scalar, axial-vector, and tensor meson TFFs derived with Bardeen–Tung recipe:

 \rightarrow Bardeen, Tung, Phys. Rev. **173** (1968) 1423

$$\mathcal{M}^{\mu\nu}(p[,\lambda] \to q_1, q_2) \propto \sum_i T_i^{\mu\nu[\alpha]} [\epsilon_{\alpha}^{\lambda}(p)] \mathcal{F}_i(q_1^2, q_2^2)$$

 no Tarrach ambiguities appear for scalar, axial vector, or tensor meson TFFs

 \rightarrow Tarrach, Nuovo Cim. **A28** (1975) 409

- absence of kinematic singularities guaranteed
- for many TFFs experimental information is scarce
 - \rightarrow talk by B. Kubis

Light-cone expansion for TFFs

 \rightarrow Hoferichter, Stoffer, JHEP **05** (2020) 159

• asymptotic behavior of TFFs can be derived using

light-cone expansion \rightarrow Brodsky, Lepage (1979, 1980, 1981)

general structure:

$$\begin{aligned} \mathcal{F}(q_1^2, q_2^2) &\sim F^{\text{eff}} M^{2n-1} \int_0^1 du \frac{\phi(u)}{(uq_1^2 + (1-u)q_2^2)^n} + \mathcal{O}(Q^{-2(n+1)}) \\ &= \frac{F^{\text{eff}} M^{2n-1}}{Q^{2n}} f(w) + \mathcal{O}(Q^{-2(n+1)}) \end{aligned}$$

 $F^{\rm eff}$: effective decay constant; $Q^2=\frac{q_1^2+q_2^2}{2};\,f(w)$ with $w=\frac{q_1^2-q_2^2}{q_1^2+q_2^2}$ determined using asymptotic form of wave functions $\phi(u)$

 goes beyond the strict OPE limit, Q² scaling rigorous (w dependence less so) Asymptotic behavior

Light-cone expansion for TFFs

- → Hoferichter, Stoffer, JHEP 05 (2020) 159
- pseudoscalars: $\mathcal{F} \sim rac{1}{Q^2}$
- scalars: $\mathcal{F}_1^S \sim rac{1}{Q^2}, \, \mathcal{F}_2^S \sim rac{1}{Q^4}$
- axial vectors: $\mathcal{F}_1^A=\mathcal{O}(Q^{-6}),$ $\mathcal{F}_{2,3}^A\sim \frac{1}{Q^4}$
- tensors: $\mathcal{F}_1^T \sim rac{1}{Q^4}$, $\mathcal{F}_{2,3,4,5}^T \sim rac{1}{Q^6}$
- BL scaling reproduced in all cases by quark model

 \rightarrow Schuler et al., Nucl. Phys. B 523 (1998) 423

• holographic QCD models for axial TFFs agree with BL scaling, both Q^2 and w dependence

 \rightarrow Leutgeb, Rebhan, PRD 101 (2020) 114015

3

Light-cone expansion for TFFs

 \rightarrow Hoferichter, Stoffer, JHEP **05** (2020) 159

- 2 Narrow resonances in a dispersive approach
- 3 Asymptotic behavior
- 4 Scalar contributions
- 5 Axial-vector and tensor mesons
- 6 Conclusions and outlook

Dispersive evaluation of $f_0(980)$ contribution

- → Danilkin, Hoferichter, Stoffer, arXiv:2105.01666 [hep-ph]
- $\pi\pi$ rescattering previously limited to $f_0(500)$ \rightarrow Colangelo, Hoferichter, Procura, Stoffer, JHEP **04** (2017) 161, PRL **118** (2017) 232001
- extension up to ~ 1.3 GeV by using coupled-channel $\gamma^* \gamma^* \rightarrow \pi \pi / \bar{K} K$ *S*-waves for I = 0

 \rightarrow Danilkin, Deineka, Vanderhaeghen, PRD **101** (2020) 054008

• covers $f_0(980)$, dispersive description of resonance in terms of $\pi\pi/\bar{K}K$ rescattering

Dispersive evaluation of $f_0(980)$ contribution

- → Danilkin, Hoferichter, Stoffer, arXiv:2105.01666 [hep-ph]
- sum-rule violations in S-wave rescattering are very small
- result largely basis independent
- together with I = 2 leads to

 $a_{\mu}^{\mathrm{HLbL}}[S$ -wave rescattering] = $-8.7(1.0) \times 10^{-11}$

Scalar contributions

Dispersive evaluation of $f_0(980)$ contribution

- → Danilkin, Hoferichter, Stoffer, arXiv:2105.01666 [hep-ph]
- dispersive $f_0(980)$ contribution estimated from deficit in shape of integrand:

$$a_{\mu}^{\text{HLbL}}[f_0(980)]_{\text{rescattering}} = -0.2(1) \times 10^{-11}$$

Scalar contributions

Dispersive evaluation of $f_0(980)$ contribution

- → Danilkin, Hoferichter, Stoffer, arXiv:2105.01666 [hep-ph]
- dispersive *f*₀(980) contribution can be compared to NWA in the same basis for HLbL
- using TFFs from quark model \rightarrow Schuler et al. (1998)

$$a_{\mu}^{\mathrm{HLbL}}[f_0(980)]_{\mathrm{NWA}} = -0.37(6) \times 10^{-11}$$

with $M_{f_0(980)} = 0.99~{\rm GeV},$ $\Gamma_{\gamma\gamma}[f_0(980)] = 0.31(5)~{\rm keV}$

- differences to NW estimates of → Knecht et al., PLB 787 (2018) 111 mainly due to propagator model, corresponding to a different HLbL basis
- comparison to \rightarrow Pauk, Vanderhaeghen, EPJC 74 (2014) 3008 difficult due to kinematic singularities

Dispersive evaluation of $f_0(980)$ contribution

- → Danilkin, Hoferichter, Stoffer, arXiv:2105.01666 [hep-ph]
- NWA for $a_0(980)$:

$$a_{\mu}^{\text{HLbL}}[a_0(980)]_{\text{NWA}} = -\left([0.4, 0.6]^{+0.2}_{-0.1}\right) \times 10^{-11},$$

where TFF scale is given by $[M_{\rho}, M_S]$

leads to

$$a_{\mu}^{\mathrm{HLbL}}[\mathrm{scalars}] = -9(1) \times 10^{-11}$$

• even heavier scalars: small contribution around -1×10^{-11} , but very uncertain two-photon coupling (not seen prominently in $\gamma\gamma$ reactions)

 \Rightarrow better treat in some form in asymptotic matching

- 2 Narrow resonances in a dispersive approach
- 3 Asymptotic behavior
- 4 Scalar contributions
- 5 Axial-vector and tensor mesons
- 6 Conclusions and outlook

- axial vectors play a prominent role in fulfilling SDCs
 → talks by G. Colangelo and A. Rebhan
- input for TFFs rather uncertain: data situation best for $f_1(1285) \rightarrow {\rm talk} \; {\rm by \; B. \; Kubis}$
- how to deal with broad $a_1(1260)$? using NWA and SU(3)?
- inclusion in dispersive framework previously hampered by kinematic singularities

- new basis solves issue with kinematic singularities for axial vectors
- axial-vector poles in transverse part of HLbL
- **longitudinal part**: axial-vector pole in Mandelstam variable *s* cancels with numerator in g 2 limit $s \rightarrow q_3^2$, but leaves well-defined non-pole contribution

$$\begin{split} \bar{\Pi}_1^{\text{axial}} &= \frac{G_2(q_1^2, q_2^2)G_1(q_3^2)}{M_A^6} \,, \\ G_1(q_3^2) &= \mathcal{F}_1(q_3^2, 0) + \mathcal{F}_2(q_3^2, 0) \,, \\ G_2(q_1^2, q_2^2) &= (q_1^2 - q_2^2)\mathcal{F}_1(q_1^2, q_2^2) + q_1^2\mathcal{F}_2(q_1^2, q_2^2) + q_2^2\mathcal{F}_2(q_2^2, q_1^2) \end{split}$$

 \rightarrow Colangelo, Hagelstein, Hoferichter, Laub, Stoffer, arXiv:2106.13222 [hep-ph]

 basis dependence due to sum-rule violations restricted by absence of kinematic singularities

- · consistent inclusion in dispersive framework now possible
- main conceptual problem for narrow axial vectors solved; challenge is input for TFFs

- HLbL contribution very sensitive to asymptotic behavior of TFFs → talk by B. Kubis
- VMD model with asymptotic constraints

 \rightarrow Zanke et al., arXiv:2103.09829 [hep-ph] points to $f_1(1285)$ contribution of symmetric TFF of a couple of units in 10^{-11}

 strong sensitivity to antisymmetric TFFs and large uncertainties ⇒ need to be controlled in combination with SDCs on HLbL

Tensor-meson contributions

- similarity to f₀(980) and S-waves: f₂(1270) contribution can be compared from NWA and ππ rescattering
- $\gamma^* \gamma^* \to \pi \pi$ helicity partial waves solved with Omnès methods including *D*-waves
 - \rightarrow Hoferichter, Stoffer, JHEP 07 (2019) 073
 - \rightarrow Danilkin, Deineka, Vanderhaeghen, PRD **101** (5) (2020) 054008

Tensor-meson contributions

→ T. Aoyama et al., Phys. Rept. 887 (2020) 1-166

5

Tensor-meson contributions

- both NW tensor-meson contribution and ππ D-wave contribution to HLbL are affected by kinematic singularities
- two options:
 - impose sum rules at a level sufficient to control ambiguities from residue subtraction
 - 2 change tensor basis or dispersive framework to avoid singularities in the first place
- both directions are pursued and work in progress

- 2 Narrow resonances in a dispersive approach
- 3 Asymptotic behavior
- 4 Scalar contributions
- 5 Axial-vector and tensor mesons
- 6 Conclusions and outlook

Conclusions

- contributions from hadronic states in the 1-2 GeV range responsible for a substantial fraction of HLbL uncertainty
- WP: resonance and SDC uncertainties are added linearly
- recent improvement on scalar $f_0(980)$ contribution: dispersive treatment in terms of coupled-channel $\pi\pi/\bar{K}K$ rescattering
- higher scalars very uncertain γγ coupling ⇒ better treated in asymptotic matching

Conclusions

- conceptual obstacles for inclusion of axial vectors in NWA in dispersive framework resolved
- given data situation and asymptotic constraints, prospects best for a phenomenologically driven determination of $f_1(1285)$ contribution
- tensor mesons: compare NWA with $\pi\pi$ rescattering: $\gamma^*\gamma^* \rightarrow \pi\pi$ *D*-waves solved with Omnès methods

Open questions and challenges

- kinematic singularities still affect tensor-meson contribution
 ⇒ subtraction introduces ambiguity due to sum-rule
 violations
- TFF input for axial vectors requires more work to control uncertainties
- effects of NWA for broader resonances need to be addressed
- sum-rule violations and ambiguities due to basis dependence affect all narrow resonances (apart from pseudoscalars)
 - \Rightarrow need to be dealt with globally for entire HLbL

6

Backup

Dispersive evaluation of $f_0(980)$ contribution

 \rightarrow Danilkin, Hoferichter, Stoffer, arXiv:2105.01666 [hep-ph]

$\Lambda \; [{ m GeV}]$		0.89	2.0
pion (+ kaon) Born terms (S-waves) S-wave $I = 0$ rescattering		$-11.4 \\ -10.0$	$-11.8 \\ -9.8$
sum rule pion (+ kaon) Born terms (S-waves)	++, ++ 00, ++ total	8.0 -9.2 -1.2	8.4 - 9.6 - 1.2
sum rule	++, ++	6.9	6.8
S-wave $I = 0$	00, ++	-7.3	-7.2
rescattering	total	-0.4	-0.4

Backup

Heavier scalars

Backup

- two-photon coupling rather uncertain
- using quark-model TFFs:

$$\begin{split} &a_{\mu}^{\mathsf{HLbL}}[f_{0}(1370)] = -(1.5^{+0.7}_{-0.4}) \times 10^{-11} \quad \left[-(0.6^{+0.3}_{-0.2}) \times 10^{-11} \right], \\ &a_{\mu}^{\mathsf{HLbL}}[a_{0}(1450)] = -(0.5^{+0.2}_{-0.1}) \times 10^{-11} \quad \left[-(0.2^{+0.1}_{-0.05}) \times 10^{-11} \right] \end{split}$$

- numbers in brackets: TFF scale set by M_ρ
- SU(3) relation for $\Gamma_{\gamma\gamma}$ of the $f_0(1370)$