Upgrade of liquid xenon calorimeter for MEG II experiment

with VUV sensitive MPPCs

1. MEG II Experiment

MEG experiment searches for lepton flavor violating decay of muon, $\mu^+ \rightarrow e^+ \gamma$.

◆ BR upper limit (90% C.L.): 5.7×10⁻¹³

MEG II experiment is the upgrade of MEG experiment.

- **Expected BR sensitivity (90% C.L.):** 4×10⁻¹⁴
- Higher beam rate
- ◆ LXe gamma-ray detector with MPPC readout
- Pixelated positron timing counter
- Cylindrical drift chamber for positron tracking
- ◆ Radiative decay counter for background identification

2. LXe Detector Upgrade

Goal is to achieve better resolutions for signal gamma ray to reduce accidental background.

- ◆ Replace 216 2" PMTs on gamma-ray inner face with 4092 VUV-sensitive MPPCs
- ◆ Modified PMT layout at lateral face
- Wider inner face
- Better uniformity of photon collection
 - Better energy resolution
- Higher granularity of scintillation readout
 - Better position resolution
- ◆ Better detection efficiency (63% ->69%)

3. Development of VUV-Sensitive MPPC

Large area VUV-sensitive MPPCs have been developed

in collaboration with Hamamatsu Photonics K.K.

Perfomance was measured in LXe.

◆ Measured PDE:16% - 27%

(Large systematics coming from geometry of setup)

12mm

Crosstalk and afterpulse is suppressed.

Wider operating voltage range

• Energy resolution is confirmed to improve as $1/\sqrt{(\# \text{ of p.e.})}$.

Mass production of MPPCs is going on.

4. Mass Test of MPPCs in LXe

Various items for readout electronics have been developed.

- ◆ MPPCs are mounted on PCB with coaxial-like signal line structure.
- ◆ Series connection of MPPCs are realized in PCB.
- ◆ PCB based feedthrough have been developed.

Mass test of 600 prototype MPPCs in LXe.

- ◆ Most of the MPPCs works properly except for 5% bad channels.
- Most of the bad channels are found to be caused by the problem of electronics, and these problem have already fixed.

5. Expected Performance

Resolutions are estimated by using Monte Carlo simulation.

- ◆ Simulation is based on the **measured properties of MPPC**.
 - ◆ Waveform of 1p.e. signal
 - ◆ PDE & gain
 - Crosstalk & afterpulse probability
- ◆ Reconstriction algorithm are being optimized to exploit the advantages of MPPC.
- **Position and energy resolution improves by a factor 2** from MEG.

◆ Timing resolution is also expected to improve.

Resolution	MEG I	MEG II
u (mm)	5	2.4
v (mm)	5	2.2
w (mm)	6	3.1
E_{γ} (w<2cm)	2.4%	1.1%
E_{γ} (w>2cm)	1.7%	1.0%
t _γ (ps)	67	60

6. Summary & Prospect

- Liquid xenon gamma-ray detetor with MPPC readout is under development for the MEG II experiment.
- VUV-sensitive MPPCs have been developed.
- We confirmed good resolutions with MC simulation based on measured properties of MPPCs.
- Mass production/test of MPPCs are on going.
- Detector construction will start in this summer.
- Commissioning will start late this year.
- Physics data taking will start next year.