Probing SUSY in Kaon physics

Kei Yamamoto (KEK IPNS)

Interplay between LHC and Flavor Physics @Nagoya Mar. 142016

LHC Run1 results

Discovery of Higgs

$$
\text { Mass } m=125.7 \pm 0.4 \mathrm{GeV}
$$

In supersymmetry, heavy stop can push up higgs mass

$$
m_{h}^{2}=m_{Z}^{2} c_{2 \beta}^{2}+\frac{3 m_{1}^{4}}{4 \pi^{2} v^{2}}\left(\log \left(\frac{M_{s}^{2}}{m_{t}^{2}}\right)+\frac{X_{t}^{2}}{M_{S}^{2}}\left(1-\frac{X_{t}^{2}}{12 M_{S}^{2}}\right)\right)
$$

[Draper, Meade, Reece, Shih 2011]

- No signals of new physics

Gluino mass > 1.4 TeV Squark mass > 1.0 TeV

Suggestion of high scale New Physics
NP scale >> SM scale

Why Kaon?

- Kaon is powerful probe to search for high scale NP effect

$$
\mathcal{L}_{e f f}=\mathcal{L}^{S M}+\frac{1}{\Lambda_{N P}^{2}} \sum_{i} C_{i} \mathcal{O}_{i}^{\operatorname{dim} 6}
$$

$$
\left|C_{\mathrm{NP}}\right| \sim 1 \quad \Rightarrow \quad \Lambda_{\mathrm{NP}} \sim\left\{\begin{array}{ccc}
500 \mathrm{TeV} & : & B_{s} \\
2000 \mathrm{TeV} & : & B_{d} \\
10^{4}-10^{5} \mathrm{TeV} & : & K^{0} \\
\text { [CKMFitter, 1309.2293] }
\end{array}\right.
$$

Current status of Flavor physics

- Unitarity triangle

- Flavor anomaly

Contents

- Introduction
- Basics and current status of Kaon physics
- Correlations in a supersymmetric model
- Summary

CP violation in Kaon

$$
\begin{aligned}
& \begin{array}{l}
K_{S} \longrightarrow 2 \pi \quad \text { cP even } \\
K_{L} \longrightarrow 3 \pi \quad \text { cP odd }
\end{array} \\
& \left|K_{L}\right\rangle \neq \frac{1}{\sqrt{2}}\left[\left|K_{\text {mixing }}^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle\right] \\
& =\frac{1}{\sqrt{2}}\left[(1+\epsilon)\left|K^{0}\right\rangle+(1-\epsilon)\left|\bar{K}^{0}\right\rangle\right] \\
& =\underset{\text { CP odd }}{\left|K_{2}\right\rangle}+\underset{\text { even }}{\mid}\left|K_{1}\right\rangle
\end{aligned}
$$

π : pseudo scalar $\left(0^{-+}\right)$ \Rightarrow CP odd

$$
\begin{gathered}
\mathrm{CP}\left|K^{0}\right\rangle=-\left|\bar{K}^{0}\right\rangle \\
K_{1}=\frac{1}{\sqrt{2}}\left(K^{0}-\bar{K}^{0}\right) \quad: \text { CP even } \\
K_{2}=\frac{1}{\sqrt{2}}\left(K^{0}+\bar{K}^{0}\right) \quad: \text { CP odd }
\end{gathered}
$$

$$
\left|K_{L}\right\rangle=\stackrel{\mathrm{CP} \text { odd }}{\left.K_{2}\right\rangle}+\stackrel{\text { CP even }}{\epsilon}\left|\stackrel{K}{1}^{K_{1}}\right\rangle
$$

Indirect CPV (KK mixing) : ε_{K}

- formulation

$$
\epsilon_{K} \simeq \frac{\operatorname{Im} M_{12}^{K}}{\Delta M^{K}}
$$

- measurement

$$
\epsilon_{K}=\frac{\mathcal{A}\left(K_{L} \rightarrow(\pi \pi)_{I=0}\right)}{\mathcal{A}\left(K_{S} \rightarrow(\pi \pi)_{I=0}\right)}
$$

$$
\begin{aligned}
& \left|\epsilon_{K}\right|_{\mathrm{SM}}=(1.90 \pm 0.26) \times 10^{-3} \\
& \left|\epsilon_{K}\right|_{\exp }=(2.228 \pm 0.011) \times 10^{-3}
\end{aligned}
$$

- Very precise measurement ($\sim 0.5 \%$)
strong constraint on NP

Direct CPV (K-> \quad decay) : ε '

K-> $\rightarrow \pi$ decay

- measurement

$$
\left|\frac{\eta_{00}}{\eta_{+-}}\right|^{2} \simeq 1-6 \operatorname{Re}\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right) \quad \begin{aligned}
& \eta_{00}=\frac{A\left(K_{\mathrm{L}} \rightarrow \pi^{0} \pi^{0}\right)}{A\left(K_{\mathrm{S}} \rightarrow \pi^{0} \pi^{0}\right)} \\
& \eta_{+-}=\frac{A\left(K_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}\right)}{A\left(K_{\mathrm{S}} \rightarrow \pi^{+} \pi^{-}\right)}
\end{aligned}
$$

- Formulation

$$
A_{0,2}=A\left(K_{L} \rightarrow(\pi \pi)_{I=0,2}\right)
$$

$$
\frac{\epsilon_{K}^{\prime}}{\epsilon_{K}}=-\frac{\omega}{\sqrt{2}\left|\epsilon_{K}\right|_{\exp } \operatorname{Re} A_{0}}\left(\frac{\operatorname{Im} A_{0}}{\text { QCD penguin }}-\frac{1}{\omega}{\operatorname{Im} A_{2}}_{\text {EW penguin }}\right.
$$

- In SM, there is accidental cancellation between ImAO and $\operatorname{ImA} 2$ due to the enhancement factor $1 / \omega$

$$
\Delta \mathrm{I}=1 / 2 \text { rule } \frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}} \equiv \frac{1}{\omega}=22.46
$$

SM prediction for $\varepsilon^{\prime} / \varepsilon$

- Recently, RBC-UKQCD collaboration give a first lattice results of $\varepsilon^{\prime} / \varepsilon$

B6, B8 : Non-perturbative parameter

$$
B_{6}^{(1 / 2)}\left(m_{c}\right)=0.57 \pm 0.15 \quad B_{8}^{(3 / 2)}\left(m_{c}\right)=0.76 \pm 0.05
$$

*SM
[RBC-UKQCD'15] 太Exp [NA48, KTeV]
$\left(\epsilon^{\prime} / \epsilon\right)_{\mathrm{SM}}=(1.4 \pm 7.0) \times 10^{-4}$
[Buras et.al'15]
$\left(\varepsilon^{\prime} / \varepsilon\right)_{\mathrm{SM}}=(1.9 \pm 4.5) \times 10^{-4}$

quantity	error on $\varepsilon^{\prime} / \varepsilon$
$B_{6}^{(1 / 2)}$	4.1
NNLO	1.6
$\hat{\Omega}_{\text {eff }}$	0.7
p_{3}	0.6
$B_{8}^{(3 / 2)}$	0.5

2.9 σ difference

Kaon rare decay: $K_{L} \rightarrow \Pi^{0} \mathbf{V V}$ and $K^{+} \rightarrow \Pi^{+} \mathbf{V V}$

- Features of $\mathrm{K} \rightarrow \pi v v$ decay
- Rare decay : $\mathrm{BR}_{\mathrm{SM}} \sim 10^{-11}$
- Theoretically clean : hadronic matrix element can be removed

$$
\begin{aligned}
& \text { Isospin symmetry }\left\langle\pi^{0}\right|\left(\bar{d}_{L} \gamma^{\mu} s_{L}\right)\left|\bar{K}^{0}\right\rangle=\left\langle\pi^{0}\right|\left(\bar{s}_{L} \gamma^{\mu} u_{L}\right)\left|K^{+}\right\rangle \\
& \leftarrow B R\left(K^{+} \rightarrow \pi^{0} e^{+} \bar{\nu}\right)_{\exp }=(5.07 \pm 0.04) \times 10^{-2}
\end{aligned}
$$

- Experiments are in progress

$$
\begin{aligned}
& B R\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)_{\exp }<2.6 \times 10^{-8}(90 \% \text { C.L. }) \quad \leftarrow \text { KOTO experiment @J-PARC } \\
& B R\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)_{\exp }=\left(1.73_{-1.05}^{+1.15}\right) \times 10^{-10}<\text { NA62 experiment @CERN }
\end{aligned}
$$

$\mathrm{K} \rightarrow$ Tvv and Unitarity triangle

$$
\mathcal{H}_{\mathrm{eff}}^{\mathrm{SM}}=\frac{G_{F}}{\sqrt{2}} \frac{\alpha}{2 \pi \sin ^{2} \theta_{W}} \sum_{i=e, \mu, \tau}\left[\left[V_{c s}^{*} V_{c d} X_{c}+V_{t s}^{*} V_{t d} X_{t}\right]\left(\bar{s}_{L} \gamma^{\mu} d_{L}\right)\left(\bar{\nu}_{L}^{i} \gamma_{\mu} \nu_{L}^{i}\right)+\right.\text { H.c. }
$$

$$
F=V_{c s}^{*} V_{c d} X_{c}+V_{t s}^{*} V_{t d} X_{t}
$$

$$
\underset{(\bar{u})}{\bar{d}} \quad \underset{(\bar{u})}{\bar{d}}
$$

$\underset{\mathrm{CP}-\quad \mathrm{T}^{0} \mathrm{Vv}+}{\mathrm{K}_{\mathrm{L}}}$
Direct CPV

$\mathrm{K} \rightarrow$ Trvv and Unitarity triangle

- Determination of CPV phase (η) directly

$$
\begin{aligned}
& \mathbf{K}_{\mathrm{L}} \rightarrow \Pi^{0} \mathbf{v} \mathbf{v} \quad A\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right) \propto A\left(K^{0} \rightarrow \pi^{0} \nu \bar{\nu}\right)-A\left(\bar{K}^{0} \rightarrow \pi^{0} \nu \bar{\nu}\right) \\
& \propto F-F^{*} \\
& \propto \operatorname{Im} F \\
& \propto \eta \\
& \mathbf{K}^{+} \rightarrow \boldsymbol{\pi}^{+} \mathbf{v} \mathbf{v} \quad B R\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right) \propto|F|^{2} \\
& \propto\left[(\operatorname{Re} F)^{2}+(\operatorname{Im} F)^{2}\right] \\
& \propto\left[\left(\bar{\rho}-\rho^{0}\right)^{2}+\bar{\eta}^{2}\right]
\end{aligned}
$$

$\mathrm{K} \rightarrow$ Trvv and Unitarity triangle

- Determination of CPV phase (η) directly

■ Unitarity triangle fit independently of B physics
[Lehnera, Lunghi, Soni 1508.01801]

$K \rightarrow \pi v \nu$ in SM

*SM [Buras et al, 1503.02693]

$$
\begin{aligned}
& \mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)=(3.00 \pm 0.30) \times 10^{-11} \\
& \mathcal{B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)=(9.11 \pm 0.72) \times 10^{-11}
\end{aligned}
$$

NLO QCD corrections to the top quark contributions NNLO QCD corrections to the charm contribution in $\mathrm{K}+\rightarrow \pi+\mathrm{Vv}^{-}$ NLO electroweak corrections

- CKM error dominant

$$
\mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)
$$

Vub and Vcb
Inclusive / exclusive puzzle

Sensitivity of $K \rightarrow \pi \nu v$

- $K \rightarrow \pi v v$ is sensitive to high scale NP
e.g.)Tree level flavor changing Z' model
$\mathrm{K} \rightarrow \pi v v$ is sensitive to high scale up to 2000 TeV
[Buras et al '14]
$M_{Z^{\prime}}=500 \mathrm{TeV}$

Can $\boldsymbol{K} \rightarrow \boldsymbol{\pi} v \boldsymbol{v}$ be enhanced even in the high scale SUSY?

$$
\begin{array}{lrl}
\text { Flavor physics } & \Leftrightarrow & \text { High scale SUSY } \\
\boldsymbol{K} \rightarrow \boldsymbol{\pi} \boldsymbol{v} \boldsymbol{v} & & \mathrm{m}_{\tilde{\mathrm{q}}}=10 \mathrm{TeV}
\end{array}
$$

Rare and (theoretically) clean process
suggestion from LHC result

Mass spectra

- We consider split family supersymmetric model
$3^{\text {rd }}$ family of squark is heavy.
$\mathcal{O}(10) \mathrm{TeV}$
$1^{\text {st }} \& 2^{\text {nd }}$ family of squark are relatively light. $\mathcal{O}(1) \mathrm{TeV}$

Motivated by

* The Nambu-Goldstone fermion hypothesis for quarks and leptons in the first two generations [Mandal, Nojiri, Sudano and Yanagida '11]
* Muon g-2 with light SUSY spectrum [|lbe, Yanagida and Yokozaki '13]
* Like-sign di-muon anomaly by the DO [Endo, Shirai, Yanagida '10]

ڤ Higgs mass suggests heavy stop, $\mathrm{O}(10) \mathrm{TeV}$

- mass spectra :

$m_{\tilde{q} 1}$	2 TeV	$\mathrm{m}_{\mathrm{q} 4} \sim$	2 TeV
$\mathrm{m}_{\mathrm{q} 2}$	2 TeV	$\mathrm{m}_{\mathrm{q} 4} \sim$	2 TeV
$\mathrm{m}_{\tilde{q} 3}$	10 TeV	$\mathrm{m}_{\mathrm{q} 6}^{\sim}$	11 TeV

M_{1}	0.5 TeV	$\tan \beta$	10
M_{2}	1 TeV		
M_{3}	3 TeV		

Chargino Z penguin

- In $K \rightarrow \pi v v$ decay, the dominant contribution to Z-penguin comes from chargino mediated one, and the effects of gluino and neutralino are suppressed.

This is because the $Z-q_{i}-q_{j}$ effective coupling is always proportional to $\mathrm{SU}(2) \mathrm{L}$ breaking.
focus on chargino Z penguin

$$
\mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)=\kappa_{L} \cdot\left(\frac{\operatorname{Im} \sqrt{X_{\mathrm{eff}}}}{\lambda^{5}}\right)^{2}
$$

Chargino Z penguin

- In $K \rightarrow \pi v v$ decay, the dominant contribution to Z-penguin comes from chargino mediated one, and the effects of gluino and neutralino are suppressed.

This is because the $Z-q_{i}-q_{j}$ effective coupling is always proportional to $\mathrm{SU}(2) \mathrm{L}$ breaking.
\star focus on chargino Z penguin

$$
\begin{aligned}
& \mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)=\kappa_{L} \cdot\left(\frac{\operatorname{Im}\left(X_{\text {eff }}\right.}{\lambda^{5}}\right)^{2} \\
& \frac{\varepsilon^{\prime}}{\varepsilon}=a \operatorname{Im} \lambda_{\mathrm{t}} \cdot\left[\left(1-\Omega_{\mathrm{eff}}\right) P^{(1 / 2)}-P^{(3 / 2)}\right] \\
& \mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right) \propto\left(\left|\frac{m_{B_{s}}}{2} C_{S}\right|^{2}\left(1-\frac{4 m_{\mu}^{2}}{m_{B_{s}}}\right)+\left\lvert\, \frac{m_{B_{s}}}{2} C_{P}+m_{\mu}\left(C_{10}^{\mathrm{SM}}+C_{10}^{\mathrm{SP}}-\left.C_{10}^{\prime}\right|^{2}\right)\right.\right.
\end{aligned}
$$

- Chargino Z penguin contributes not only K-> \quad Kvv but also $\varepsilon^{\prime} / \varepsilon$ and $\mathrm{Bq}->\mu \mu$ -> correlate to each other

■ Mixing dependence

- Z penguin $\left(K_{L} \rightarrow \pi v v \& \varepsilon^{\prime}\right)$:

个single mixing effect is minor
[Colangelo and Isidori '98] $\quad \Rightarrow$ neglect S12

- $\Delta \mathrm{F}=2\left(\varepsilon_{\mathrm{K}}\right.$ and $\left.\Delta \mathrm{M}_{\mathrm{K}}\right): \mathrm{s}_{13} \times \mathrm{s}_{23}, 3^{\text {rd }}$ squark

\star neglect s12 mixing and only consider s23 and s13
\Rightarrow combination s23*s13
brings s->d transition

Constraints from $\varepsilon_{K} \& \Delta M_{K}$

- εK
chargino Z penguin's phase dependence

$$
\left|\epsilon_{K}\right|_{\exp }=(2.228 \pm 0.011) \times 10^{-3}
$$

\star need phase tuning

- $\Delta \mathrm{M}_{\mathrm{K}}$

$$
0.75 \leq \frac{\Delta M_{K}}{\left(\Delta M_{K}\right)_{\mathrm{SM}}} \leq 1.25
$$

[Buras et al, 1306.3775]
\star to avoid $\Delta \mathrm{MK}$ constraint

$$
s 23, \text { s13 < } 0.3
$$

Relation between $\varepsilon^{\prime} / \varepsilon$ and $\mathrm{K} \rightarrow \pi v v$

Large enhancement $\varepsilon^{\prime} / \varepsilon$ implies suppressed $\mathrm{K}_{\mathrm{L}}->\pi^{0} \mathrm{VV}$
chargino Z penguin's phase dependence

Other parameters

- $\mu / \mathrm{M} 2$ dependence

\star K-> \quad rvv increase in the region of sizable mixing wino and higgsino

$$
\mu / \mathrm{M} 2=1.5 \sim 2.5
$$

- LR mixing

$$
\theta_{L R}^{t} \simeq \frac{m_{t}\left(A_{0}-\mu \cot \beta\right)}{m_{\tilde{t}_{L}}^{2}-m_{\tilde{t}_{R}}^{2}}
$$

$$
\star \quad \theta_{\mathrm{LR}, \mathrm{u}}=0.3
$$

Numerical results $1 ; \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} \mathrm{vv}$ vs $\mathrm{K}^{+} \rightarrow \pi^{+} \mathrm{vv}$

[M Tanimoto, KY,1603.XXXX]

\downarrow with constraint from εK

- Input parameter :

Mixing parameters

$$
\begin{aligned}
& s_{L, 12}^{u}=S_{R, 12}^{u}=0 \\
& s_{L, 13}^{u}=0.3, s^{u}{ }_{R, 13}=0 \\
& S_{L, 23}^{u}=0.3, s^{u}{ }_{R, 23}=0
\end{aligned}
$$

LR mixing
$\theta_{L R, u}=0.3$
$\mu / \mathrm{M} 2=1.5 \sim 2.5$
CKM input : best fit value B6 \& B8: 3σ

- Predicted region :

$$
\begin{aligned}
& \mathrm{BR}\left(\mathrm{~K}_{\mathrm{L}}^{-}>\pi \mathrm{VV}\right)<2 \times 10^{-10} \\
& \mathrm{BR}\left(\mathrm{~K}^{+}->\pi \mathrm{VV}\right)<2 \times 10^{-10}
\end{aligned}
$$

Numerical results 2 ; $\mathrm{K} \rightarrow \pi v v_{\text {vs }} \varepsilon^{\prime} / \varepsilon$

- : our prediction
- : SM prediction

- Input parameter:

Mixing parameters

$$
\begin{aligned}
& S_{L, 12}^{u}=s_{R, 12}^{u}{ }_{R, 12} \\
& S_{L, 13}^{u}=0.3, s_{R, 13}^{u}=0 \\
& S_{L, 23}^{u}=0.3, s_{R, 23}^{u}=0
\end{aligned}
$$

LR mixing

$$
\begin{gathered}
\theta_{\mathrm{LR}, \mathrm{u}}=0.3 \\
\mu / \mathrm{M} 2=1.5 \sim 2.5
\end{gathered}
$$

CKM input : best fit value B6 \& B8 : 3σ

- Predicted region :

$$
\mathrm{BR}\left(\mathrm{~K}_{\mathrm{L}}->\pi \mathrm{vv}\right)<3 \times 10^{-11} \Leftrightarrow \varepsilon^{\prime} / \varepsilon
$$

Work in progress

Numerical results $3 ; \quad \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} \mathrm{vv}$ vs $\mathrm{Bq} \rightarrow \mu \mu$

Exp. 1σ

- Input parameter:

Mixing parameters

$$
\begin{aligned}
& S_{L, 12}^{u}=S_{R, 12}^{u}{ }_{R, 12} \\
& S_{L, 13}^{u}=0.3, s_{R, 13}^{u}=0 \\
& S_{L, 23}^{u}=0.3, s_{R, 23}^{u}=0
\end{aligned}
$$

LR mixing

$$
\theta_{\mathrm{LR}, \mathrm{u}}=0.3
$$

$$
\mu / \mathrm{M} 2=1.5 \sim 2.5
$$

CKM input : best fit value
B6 \& B8: 3σ

$$
\begin{array}{ccc}
& \mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right) & \mathcal{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right) \\
\text {太sm } & (3.65 \pm 0.23) \times 10^{-9} & (1.06 \pm 0.09) \times 10^{-10} \\
\text { 太Exp } & \left(2.8_{-0.6}^{+0.7}\right) \times 10^{-9} & \left(3.9_{-1.4}^{+1.6}\right) \times 10^{-10}
\end{array}
$$

Summary

- Kaon physics offers a powerful probe of NP beyond the SM.
- Rare Kaon decays $K \rightarrow \pi v v$ are theoretically very clean and sensitive to NP at a very high scale, which is not accessible at the LHC.
- We have presented correlations between $K->\pi v v, \varepsilon^{\prime} / \varepsilon$ and $\mathrm{Bq}->\mu \mu$ in a split-family supersymmetric model. K-> $\boldsymbol{\pi} v \mathrm{v}$ can be enhanced even in the high scale SUSY, 10 TeV .

