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LHC*Run1*results*

Gluino Mass Limit

28

Gluino mass limit  ~ 1.5 TeV
9/2/2016, KEK-PH 2016, KEK , Tomoyuki Saito (University of Tokyo)

!  Discovery'of'Higgs

!  No'signals'of'new'physics

Gluino'mass'>'1.4'TeV'
Squark'mass'>'1.0'TeV'

[Draper,'Meade,'Reece,'Shih'2011']

In'supersymmetry,'heavy'stop'can'push'
up'higgs'mass

Sugges&on)of)high)scale)New)Physics)
NP scale >> SM scale 

Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov)

D±X (12.2 ±1.7 ) % –
D∗(2010)±X [i ] (11.4 ±1.3 ) % –
Ds1(2536)±X ( 3.6 ±0.8 ) × 10−3 –
DsJ (2573)±X ( 5.8 ±2.2 ) × 10−3 –
D∗′(2629)±X searched for –
B+X [j ] ( 6.08 ±0.13 ) % –
B0

s X [j ] ( 1.59 ±0.13 ) % –

B+
c X searched for –

Λ+
c X ( 1.54 ±0.33 ) % –

Ξ0
c X seen –

Ξb X seen –
b -baryon X [j ] ( 1.38 ±0.22 ) % –
anomalous γ+ hadrons [k] < 3.2 × 10−3 CL=95% –
e+ e−γ [k] < 5.2 × 10−4 CL=95% 45594

µ+µ−γ [k] < 5.6 × 10−4 CL=95% 45594

τ+ τ−γ [k] < 7.3 × 10−4 CL=95% 45559

ℓ+ ℓ−γγ [l] < 6.8 × 10−6 CL=95% –
qqγγ [l] < 5.5 × 10−6 CL=95% –
ν ν γγ [l] < 3.1 × 10−6 CL=95% 45594

e±µ∓ LF [i ] < 1.7 × 10−6 CL=95% 45594

e± τ∓ LF [i ] < 9.8 × 10−6 CL=95% 45576

µ± τ∓ LF [i ] < 1.2 × 10−5 CL=95% 45576

pe L,B < 1.8 × 10−6 CL=95% 45589

pµ L,B < 1.8 × 10−6 CL=95% 45589

H0H0H0H0 J = 0

Mass m = 125.7 ± 0.4 GeV

H0 Signal Strengths in Different ChannelsH0 Signal Strengths in Different ChannelsH0 Signal Strengths in Different ChannelsH0 Signal Strengths in Different Channels

Combined Final States = 1.17 ± 0.17 (S = 1.2)
W W ∗ = 0.87+0.24

−0.22

Z Z∗ = 1.11+0.34
−0.28 (S = 1.3)

γγ = 1.58+0.27
−0.23

bb = 1.1 ± 0.5
τ+ τ− = 0.4 ± 0.6
Z γ < 9.5, CL = 95%
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Why*Kaon*?*

B'mesonDNP :C   Kaon'D :P P'

[Isidori,'1302.0661]Kaon%can%reach%the%high%scale%NP%beyond%
the%direct%search%of%the%LHC%%

NP*SM*

[CKMfiWer,'1309.2293]

'

Indirect searches with FCNCs (Flavour Changing Neutral Currents)
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! disentangle NP structure

(B ! K

⇤µ̄µ prime example; talks this morning)

K ! ⇡⌫⌫ in the Standard Model and Beyond Rob Knegjens (TUM-IAS) 3

!  Kaon'is'powerful'probe'to'search'for'high'scale'NP'effect''



Current status of Flavor physics 
The most significant deviation from the SM

• Some would be unambiguous NP signals

f : undefined function of an ill-defined variable

(monotonic, in my opinion)

Except for theoretically cleanest modes,
cross-checks needed to build robust case
– measurements of related observables
– independent theory / lattice calc.

• Lots of papers on each of these...
1 2 3 4
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!  Unitarity*triangle* !  Flavor*anomaly*

[Zoltan'Lige\’s'talk'at'KEK_PH2016]



!  εK*
!  εK’/εK*
!  KL*→*π0νν*and*K+*→*π+νν*

!  Transverse*muon*polarizaSon*:**

                                           PT ��n* K+ → π0µ+ν*decay*

Contents 

εK*

εK’/εK*

KL*→*π0νν*

KL*→*μμ*

! Introduc\on'

! Basics'and'current'status'of'Kaon'physics'

! Correla\ons'in'a'supersymmetric'model'

! 'Summary'



CP*violaSon*in*Kaon*

For the KL → π0νν̄ decay, the K0− K̄0 mixing should be taken account, and one obtains

A(KL → π0νν̄) =
GF√
2

2α

πsin2θW

(
ν̄i
Lγµν

i
L

)
⟨π0|

[
F (s̄LγµdL) + F ∗(d̄LγµsL)

]
|KL⟩

=
GF√
2

2α

πsin2θW

(
ν̄i
Lγµν

i
L

) 1√
2

[
F (1 + ϵ̄)⟨π0|(s̄LγµdL)|K0⟩+ F ∗(1− ϵ̄)⟨π0|(d̄LγµsL)|K̄0⟩

]

=
GF√
2

2α

πsin2θW

(
ν̄i
Lγµν

i
L

) 1√
2
[F (1 + ϵ̄)− F ∗(1− ϵ̄)] ⟨π0|(d̄LγµsL)|K0⟩

≃ GF√
2

2α

πsin2θW

(
ν̄i
Lγµν

i
L

) 1√
2
2ImF ⟨π0|(d̄LγµsL)|K0⟩. (10)

In the step of the first line going to the second line in (10) , we use

|KL⟩ =
1√
2

[
(1 + ϵ̄)|K0⟩+ (1− ϵ̄)|K0⟩

]
, (11)

and then, after using the CP transition relation in the second line,

CP|K0⟩ = −|K̄0⟩, C|K0⟩ = |K̄0⟩, (12)

⟨π0|(d̄LγµsL)|K̄0⟩ = −⟨π0|(s̄LγµdL)|K0⟩, (13)

we obtain the equation in the third line. In the final line, we neglect the CP violation in
K0 − K̄0 mixing, ϵ̄, due to its smallness |ϵ̄| ∼ 10−3.

Taking the ratio between the branching ratio of K+ → π0e+ν̄ and KL → π0νν̄, we have
the simple form:

BR(KL → π0νν̄)

BR(K+ → π0e+ν̄)
=

2

|Vus|2

(
α

2πsin2θW

)2 τ(KL)

τ(K+)

∑

i=e,µ,τ

(ImF )2. (14)

Therefore, the branching ratio of KL → π0νν̄ is given as follows:

BR(KL → π0νν̄) = 3κ · rKL

rK+

τ(KL)

τ(K+)
(ImF )2, (15)

where rKL and rK+ denote the isospin breaking effect [20, 21]. It is remarked that the
branching ratio of KL → π0νν̄ depends on the imaginary part of F . Since the charm-quark
contribution is negligible due to the small imaginary part of V ∗

csVcd, it is enough to consider
only the top-quark exchange in this decay.

In the SM, K+ → π+νν̄ and KL → π0νν̄ are related to the UT fit. We write down the
branching ratio in terms of the Wolfenstein parameters. Since ReF and ImF are given as

ReF = −λXc − A2λ5(1− ρ)Xt , ImF = A2λ5ηXt , (16)

we can express the branching ratio of these decays as

BR(K+ → π+νν̄) = 3κ · rK+ [(ReF )2 + (ImF )2]

= 3κ · rK+ · A4λ10X2
t

[ (
ρ̄− ρ0

)2
+ η̄2

]
, (17)
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where

Ĥ = M̂ − i
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⎛

⎝ M11 − iΓ11
2 M12 − iΓ12

2
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2 M22 − iΓ22

2

⎞

⎠ (10.4)

with M̂ and Γ̂ being hermitian matrices having positive (real) eigenvalues in analogy with M

and Γ. Mij and Γij are the transition matrix elements from virtual and physical intermediate

states respectively. Using

M21 = M∗
12 , Γ21 = Γ∗

12 , (hermiticity) (10.5)

M11 = M22 ≡ M , Γ11 = Γ22 ≡ Γ , (CPT) (10.6)

we have

Ĥ =

⎛

⎝ M − iΓ
2 M12 − iΓ12

2

M∗
12 − i

Γ∗
12
2 M − iΓ

2

⎞

⎠ . (10.7)

We can next diagonalize the system to find:

Eigenstates:

KL,S =
(1 + ε̄)K0 ± (1 − ε̄)K̄0

√
2(1+ | ε̄ |2)

(10.8)

where ε̄ is a small complex parameter given by

1 − ε̄

1 + ε̄
=

√√√√M∗
12 − i1

2Γ∗
12

M12 − i1
2Γ12

. (10.9)

Eigenvalues:

ML,S = M ± ReQ ΓL,S = Γ ∓ 2ImQ (10.10)

where

Q =

√

(M12 − i
1

2
Γ12)(M∗

12 − i
1

2
Γ∗

12). (10.11)

Consequently we have

∆M = ML − MS = 2ReQ ∆Γ = ΓL − ΓS = −4ImQ. (10.12)

It should be noted that the mass eigenstates KS and KL differ from CP eigenstates

K1 =
1√
2
(K0 − K̄0), CP |K1⟩ = |K1⟩ , (10.13)

K2 =
1√
2
(K0 + K̄0), CP |K2⟩ = −|K2⟩ , (10.14)

by a small admixture of the other CP eigenstate:

KS =
K1 + ε̄K2√

1+ | ε̄ |2
, KL =

K2 + ε̄K1√
1+ | ε̄ |2

(10.15)
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K_Kbar'mixing

Indirect*CPV*(KK*mixing)*:*εK 
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✏K at Next-to-Next-to-Leading Order:
The Charm-Top-Quark Contribution

Joachim Broda,b,c and Martin Gorbahnb,c

aInstitut für Theoretische Teilchenphysik,

Universität Karlsruhe, D-76128 Karlsruhe, Germany

bExcellence Cluster Universe, Technische Universität München,

Boltzmannstraße 2, D-85748 Garching

cInstitute for Advanced Study, Technische Universität München,

Arcisstraße 21, D-80333 München, Germany

Abstract

We perform a next-to-next-to-leading order (NNLO) QCD analysis of the charm-
top-quark contribution ⌘ct to the e↵ective |�S| = 2 Hamiltonian in the Standard
Model. ⌘ct represents an important part of the short distance contribution to the
parameter ✏K . We calculate the three-loop anomalous dimension of the leading op-
erator Q̃S2, the three-loop mixing of the current-current and penguin operators into
Q̃S2, and the corresponding two-loop matching conditions at the electroweak, the
bottom-quark, and the charm-quark scale. As our final numerical result we obtain
⌘ct = 0.496±0.047, which is roughly 7% larger than the next-to-leading-order (NLO)
value ⌘NLO

ct = 0.457±0.073. This results in a prediction for |✏K | = (1.90±0.26)⇥10�3,
which corresponds to an enhancement of approximately 3% with respect to the value
obtained using ⌘NLO

ct .

1 Introduction

Indirect CP violation in the neutral Kaon system was discovered by Christenson, Cronin,
Fitch and Turlay in 1964, who observed the decay of a KL into two pions [1]. This decay
would be forbidden in the case of exact CP symmetry. The parameter ✏K measures indirect
CP violation and is defined by

✏K =
A (KL ! (⇡⇡)I=0)

A (KS ! (⇡⇡)I=0)
(1.1)
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[Lige\'and'Sala,'1602.08494]

!  measurement

!  Very'precise'measurement'(~0.5%)'
!  strong'constraint'on'NP



Direct*CPV*(KY>ππ*decay)*:*ε’ 

Figure 29: Indirect versus direct CP violation in KL → ππ.

even state or vice versa (see fig. 29). A measure of such a direct CP violation in KL → ππ is

characterized by a complex parameter ε′ defined as

ε′ =
1√
2
Im
(

A2

A0

)
eiΦ, Φ = π/2 + δ2 − δ0, (10.27)

where the isospin amplitudes AI in K → ππ decays are introduced through

A(K+ → π+π0) =

√
3

2
A2e

iδ2 (10.28)

A(K0 → π+π−) =

√
2

3
A0e

iδ0 +

√
1

3
A2e

iδ2 (10.29)

A(K0 → π0π0) =

√
2

3
A0e

iδ0 − 2

√
1

3
A2e

iδ2 . (10.30)

Here the subscript I = 0, 2 denotes states with isospin 0, 2 equivalent to ∆I = 1/2 and

∆I = 3/2 transitions, respectively, and δ0,2 are the corresponding strong phases. The weak

CKM phases are contained in A0 and A2. The strong phases δ0,2 cannot be calculated, at

least, at present. They can be extracted from ππ scattering. Then Φ ≈ π/4.

The isospin amplitudes AI are complex quantities which depend on phase conventions.

On the other hand, ε′ measures the difference between the phases of A2 and A0 and is a

physical quantity.

Experimentally ε and ε′ can be found by measuring the ratios

η00 =
A(KL → π0π0)

A(KS → π0π0)
, η+− =

A(KL → π+π−)

A(KS → π+π−)
. (10.31)

Indeed, assuming ε and ε′ to be small numbers one finds

η00 = ε−
2ε′

1 −
√
ω

≃ ε− 2ε′, η+− = ε+
ε′

1 + ω/
√

2
≃ ε+ ε′ (10.32)

where experimentally ω = ReA2/ReA0 = 0.045.

In the absence of direct CP violation η00 = η+−. The ratio ε′/ε can then be measured

through ∣∣∣∣
η00

η+−

∣∣∣∣
2

≃ 1 − 6 Re(
ε′

ε
) . (10.33)
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K_>ππ'decay'

EW'penguinQCD'penguin

! Formula\on

2 Basic formulae 10

with [31, 32]

B
(1/2)
6

= B
(3/2)
8

= 1 (43)

in the large-N limit. As had been demonstrated in [10], B
(1/2)
6

and B
(3/2)
8

exhibit a
very weak scale dependence. The dimensionful parameters entering (41), (42) are given
by [33,34]

mK = 497.614MeV, F⇡ = 130.41(20)MeV,
FK

F⇡
= 1.194(5) , (44)

ms(mc) = 109.1(2.8)MeV, md(mc) = 5.44(19)MeV . (45)

In [34], the light quark masses are presented at a scale of 2GeV, and we have evolved
them to µ = mc = 1.3GeV with the help of the renormalisation group equation. For the
comparison with lattice results below, we also need their values at µ = 1.53GeV, which
are found to be

ms(1.53GeV) = 102.3(2.7)MeV, md(1.53GeV) = 5.10(17)MeV . (46)

Below, we will neglect the tiny errors on mK , FK , and F⇡.
It should be emphasised that the overall factor h in (41), (42) depends on the nor-

malisation of the amplitudes A
0,2. In [10] and recent papers of the RBC-UKQCD col-

laboration [23, 35] h =
p

3/2 is used whereas in most recent phenomenological pa-
pers [4, 17, 20, 21], h = 1. Correspondingly, the experimental values quoted for A

0,2

di↵er by this factor. To facilitate comparison with [10] and the RBC-UKQCD collabora-
tion results [23, 25, 35], we will set h =

p
3/2 in the present paper and consequently the

experimental numbers to be used are

ReA
0

= 33.22(1)⇥ 10�8 GeV , ReA
2

= 1.479(3)⇥ 10�8 GeV , (47)

which display the �I = 1/2 rule

ReA
0

ReA
2

⌘ 1

!
= 22.46 . (48)

We also note that while equation (41) is identical to (5.10) in [10], the definition of B(3/2)
8

in the present paper di↵ers from [10] [cf (5.18) there]. This is to ensure that B(1/2)
6

= 1

and B
(3/2)
8

= 1 both correctly reproduce the large-N limit of QCD. In contrast, (5.18)
in [10] was based on the so-called vacuum insertion approximation, in which additional

terms appear in the normalisation of B(3/2)
8

. Such terms misrepresent the large-N limit
of QCD. With our conventions, 1/N corrections in (41) and (42) are represented by the

departure of B(1/2)
6

and B
(3/2)
8

from unity. They have been investigated in [22] and very
recently in [24] with the result summarised in (4). We refer to this paper for further
details.

We now turn to the parameter q which enters (36). We first note that, like B(1/2)
6

and

B
(3/2)
8

, it is nearly renormalisation-scale independent. Its value can be estimated in the
large-N approach [17]; as this approach correctly accounts for the bulk of the experimental
value of ReA

0

, the ensuing estimate can be considered a plausible one. In the large-N

ΔI=1/2'rule

!  In'SM,' here'is'accidental'cancella\on'between'ImA0'and'ImA2'due'to''
'      the'enhancement'factor'1/ω

!  measurement
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the precision on mt increased by much in the last two decades. a
(3/2)
0

contributes
positively to "0/".

iv) The contribution of the (V �A)⌦(V +A) electroweak penguin operators Q
7

and Q
8

to P (3/2) is represented by the second term in (55). This contribution is dominated
by Q

8

and depends sensitively on mt and ↵s. It contributes negatively to "0/".

The competition between these four contributions is the reason why it is di�cult to
predict "0/" precisely. In this context, one should appreciate the virtue of our approach:
the contributions i) and iii) can be determined rather precisely by CP-conserving data so
that the dominant uncertainty in our approach in predicting "0/" resides in the values of

B
(1/2)
6

and B
(3/2)
8

.

3 Prediction for "0/" in the SM

3.1 Prediction for "0/" and discussion

We begin our analysis by employing the lattice values in (2) and (3). Varying all parame-
ters within their input ranges and combining the resulting variations in "0/" in quadrature,
we obtain:

("0/")
SM

= (1.9± 4.5)⇥ 10�4. (61)

Comparing to the experimental result ("0/")
exp

= (16.6±2.3)⇥10�4 (average of NA48 [26]
and KTeV [27,28]), we observe a discrepancy of 2.9 � significance.

quantity error on "0/" quantity error on "0/"

B
(1/2)
6

4.1 md(mc) 0.2
NNLO 1.6 q 0.2

⌦̂
e↵

0.7 B
(1/2)
8

0.1
p
3

0.6 Im�t 0.1

B
(3/2)
8

0.5 p
72

0.1
p
5

0.4 p
70

0.1
ms(mc) 0.3 ↵s(MZ) 0.1
mt(mt) 0.3

Table 4: Error budget, ordered from most important to least important. Each line shows
the variation from the central value of our "0/" prediction, in units of 10�4, as the cor-
responding parameter is varied within its input range, all others held at central values.

A detailed error budget is given in Table 4. It is evident that the error is dominated
by the hadronic parameter B

(1/2)
6

. Uncertainties from higher-order corrections are still
significant yet small if compared to the deviation from the experimental value. All other
individual errors are below 10�4, with the third most important uncertainty coming from
the isospin breaking parameter ⌦̂

e↵

, at a level of 0.7 ⇥ 10�4 and about six times smaller
than the error due to B

(1/2)
6

. If matrix elements are taken from a lattice calculation, the

SM*predicSon*for*ε’/ε*
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Employing the lattice results of (2) and (3), in our numerical analysis we find

"0/" = (2.2± 3.7)⇥ 10�4 , (5)

consistent with, but significantly more precise than the result obtained recently by the
RBC-UKQCD lattice collaboration [25],

("0/")
SM

= (1.4± 7.0)⇥ 10�4 . (6)

This is even more noteworthy considering the fact that our result comprises also un-
certainties from isospin corrections and CKM parameters which were not considered in
the error estimate of [25]. Our result di↵ers with more than 3 � significance from the
experimental world average from NA48 [26] and KTeV [27,28] collaborations,

("0/")
exp

= (16.6± 2.3)⇥ 10�4 , (7)

suggesting evidence for new physics in K decays.
But even discarding the lattice results, varying all input parameters, we find at the

bound B
(1/2)
6

= B
(3/2)
8

= 1,

("0/")
SM

= (9.1± 3.1)⇥ 10�4 , (8)

still 2� below the experimental data. We consider this bound conservative since employing
the lattice value in (2) and B

(1/2)
6

= B
(3/2)
8

= 0.76, instead of (8), one obtains (6.3±2.4)⇥
10�4.

This already shows that with the rather precise value of B(3/2)
8

from lattice QCD, the

final result for "0/" dominantly depends on the value of B(1/2)
6

and both lattice QCD [25]
and the large-N approach [24] indicate that the SM value of "0/" is significantly below
the data.

The two main goals of the present paper are:

• Derivation of a new version of our formula for "0/" which could also be used beyond
the SM and which appears to be more useful than its variants presented by us in
the past.

• Demonstration that our approach provides a substantially more accurate prediction
for "0/" in the SM than it is presently possible within lattice QCD and that the
upper bound in (8) is rather conservative.

It should be stressed that assuming dominance of SM dynamics in CP-conserving data,
our determination of the contributions of (V �A)⌦ (V �A) operators to "0/" is basically
independent of the non-perturbative approach used. The RBC-UKQCD lattice collab-
oration calculates these contributions directly and we will indeed identify a significant
di↵erence between their estimate of the Q

4

contribution to "0/" and ours.
Our paper is organised as follows. In Section 2, we derive the analytic formula for "0/"

in question using the strategy of [10] but improving on it. Using this formula, we present

a new analysis of "0/" within the SM exhibiting its sensitivity to the precise value of B(1/2)
6

and the weak dependence on q. In Section 3, we perform the anatomy of uncertainties

[NA48,'KTeV][RBC_UKQCD’15]

2.9σ'difference'

[Buras'et.al‘15]

1σ

Exp.'1σ

! Future
larce'calcu_'la\ons'can'reduce'the'errors'on'Re(εs/ε)'to'around'20%'in'about'5_years'\me.
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presented in [20, 21].
One new aspect of the present paper is the realisation that under the assumption

that NP contributions to ReA
0

and ReA
2

are negligible, the leading contributions of
(V �A)⌦ (V �A) to "0/" can be entirely expressed in terms of their Wilson coe�cients.
Furthermore, we derive a formula for "0/" which under the above assumption can be used
in any extension of the SM in which the operator structure is the same as in the SM.
NP enters only through the modified values of the Wilson coe�cients and the dominant
non-perturbative uncertainties are contained in

B
(1/2)
6

, B
(3/2)
8

, q ⌘ z
+

(µ)hQ
+

(µ)i
0

z�(µ)hQ�(µ)i0
. (1)

The ratio q, involving matrix elements of current-current operators Q± and their Wilson
coe�cients z±, enters the determination of the contribution of (V �A)⌦(V �A) operators
from CP-conserving data and its range will be estimated in Section 2. But for 0  q  0.1
obtained from QCD lattice and large-N approaches the dependence of "0/" on q is very
weak.

As far as the parameters B
(1/2)
6

and B
(3/2)
8

are concerned, B
(1/2)
6

= B
(3/2)
8

= 1 in
the large-N limit of QCD. The study of 1/N corrections to the large-N limit indicated

that B(3/2)
8

is suppressed below unity [22], but no clear-cut conclusion has been reached

in that paper on B
(1/2)
6

. Moreover, the precise amount of suppression of B(3/2)
8

could
not be calculated in this approach. Fortunately, in the meantime significant progress
has been achieved in the case of the matrix element hQ

8

i
2

by the RBC-UKQCD lattice

collaboration [23], which allowed to determine B
(3/2)
8

to be [21]

B
(3/2)
8

(mc) = 0.76± 0.05 (RBC-UKQCD), (2)

in agreement with large-N expectations [22, 24], but with higher precision.

But also some progress on B
(1/2)
6

has been made, both by lattice QCD and the large-
N approach. In particular, very recently the RBC-UKQCD lattice collaboration [25]
presented their first result for the matrix element hQ

6

i
0

from which one can extract (see
below and [24])

B
(1/2)
6

(mc) = 0.57± 0.15 (RBC-UKQCD). (3)

This low value of B
(1/2)
6

is at first sight surprising and as it is based on a numerical
simulation one could wonder whether it is the result of a statistical fluctuation. But the
very recent analysis in the large-N approach in [24] gives strong support to the values
in (2) and (3). In fact, in this analytic approach one can demonstrate explicitly the

suppression of both B
(1/2)
6

and B
(3/2)
8

below their large-N limit B
(1/2)
6

= B
(3/2)
8

= 1 and

derive a conservative upper bound on both B
(1/2)
6

and B
(3/2)
8

which reads [24]

B
(1/2)
6

 B
(3/2)
8

< 1 (large-N). (4)

While one finds B(3/2)
8

(mc) = 0.80± 0.10, the result for B(1/2)
6

is less precise but there is a

strong indication that B(1/2)
6

< B
(3/2)
8

in agreement with (2) and (3). For further details,
see [24] and Section 3 below.
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FIG. 3. Kaon unitarity triangle fits. Red contours (labelled KUT) are obtained including BR(K+ ! ⇡+⌫⌫̄), "0
th

/"
exp

, " and
|V

cb

|. The small black contour is the current standard unitarity triangle (SUT) fit from B/K physics. In panel (a) we present
the current status. The yellow area is allowed by "0

th

/"
exp

and the region below the blue curves is allowed by BR(K+ ! ⇡+⌫⌫̄).
In panels (b–d) we show the impact of future improvements on the experimental determination of BR(K+ ! ⇡+⌫⌫̄) and on the
theoretical calculation of the quantities ImA

0

and ImA
2

(see text for more details). In panel (b) we assume that future central
values for these quantities remain unchanged. In panel (c) we consider a scenario in which ImA

0

shifts to the value expected
from "0

exp

/"
exp

and the standard unitarity triangle fit. In panel (d) we assume, in addition, that the future experimental
determination of BR(K+ ! ⇡+⌫⌫̄) will shift to the central value of the SM prediction.

⌘
1

S
0

(xc) (VcsV
⇤
cd)

2 + ⌘
2

S
0

(xt) (VtsV
⇤
td)

2

+ 2⌘
3

S
0

(xc, xt)VcsV
⇤
cdVtsV

⇤
td

i
, (33)

where the numerical inputs we use are summarized in
Table I. The quantity " summarizes the impact of long
distance e↵ects and can be extracted from the knowl-
edge of Im A

0

and from an estimate of the long distance
contributions to �mK . Following Ref. [64], we have:

" =
p
2 sin(�")

 
1 +

⇢p
2 |"

exp

|
Im(A

0

)

Re(A
0

)

!
(34)

where ⇢ = 0.6 ± 0.3. Using the most recent RBC de-
termination of Im(A

0

) and �" of Eq. (26), we obtain
" = 0.963± 0.014.

RESULTS

In Fig. 1 we show the dependence of Im("0/") on ⌘̄
for di↵erent choices of the Im(A

0

) central value. Note
how the uncertainty on this matrix element completely
dominates the total uncertainty.
In Fig. 2 we present the standard unitarity triangle

(SUT) fit obtained using B andK physics measurements.
All the inputs used in the fit are taken from Refs. [2, 6]. In
the upper panel we show the present constraints imposed
by "0/". In the lower panel we entertain a future scenario
in which the uncertainty on ImA

0

is 18%, as discussed
above. Its central value is assumed to shift to what is
necessary to reproduce the experimental determination
of "0/" (note that even though "0/"

exp

is proportional to

"  Unitarity*triangle*fit*independently*of*B*physics*
**

7

FIG. 4. Impact of a future measurement of BR(K
L

! ⇡0⌫⌫̄)
assuming SM central values with a 10% uncertainty [38, 39].

⌘̄, the �2 minimized over every other parameter is not
a symmetric function of ⌘̄). If the future ImA

0

central
value does not shift, the "0/" allowed region is ⌘̄ & 1.6
(see Fig. 3b) implying a very strong tension with the
standard fit.

In Fig. 3 we present the Kaon unitarity triangle fits
(KUT) in various scenarios. In this fit we use only
inputs from Kaon physics with the exception of tree–
level determinations of |Vcb| from inclusive and exclusive
b ! c`⌫ decays. The red contours are obtained including
BR(K+ ! ⇡+⌫⌫̄), "0/", ", and |Vcb| (from an average of
inclusive and exclusive decays). The small black contour
is the current standard unitarity triangle fit from B/K
physics.

In figure 3a we present the current status of this fit.
The yellow area is allowed by "0/" and the region below
the blue curves is allowed by BR(K+ ! ⇡+⌫⌫̄).

In figures 3b–3d we show the impact of future improve-
ments on the experimental determination of BR(K+ !
⇡+⌫⌫̄) and on the theoretical calculation of the quan-
tities ImA

0

and ImA
2

. In particular, in panel (b) we
assume that future central values for these quantities re-
main unchanged and that experimental and theoretical
uncertainties on BR(K+ ! ⇡+⌫⌫̄) and Im(A

0,2) reduce
as discussed above. In panel (c) we consider a scenario in
which ImA

0

shifts to the value expected from "0
exp

/"
exp

and the standard unitarity triangle fit. In panel (d) we
assume, in addition, that the future experimental deter-
mination of BR(K+ ! ⇡+⌫⌫̄) will shift to the central
value of the SM prediction.

Finally in figure 4 we show the impact of a future mea-
surement of BR(KL ! ⇡0⌫⌫̄) at the SM level with 10%
uncertainty.

In figures 5 and 6 we present the very same fits but
display the "0

th

/"
th

rather than "0
th

/"
exp

. The theoretical
ratio "0

th

/"
th

is CP-conserving and, therefore, the linear

dependence on ⌘̄ cancels.

CONCLUSIONS AND OUTLOOK

In this work we have tried to draw attention to the sig-
nificant progress that lattice methods have recently made
for quantitatively addressing non-perturbative e↵ects in
several K-decays such as K ! ⇡⇡ and the direct CP-
violation parameter Re ("0/"), �mK , the long-distance
contribution to ✏K , and rare K-decays.
This means in the near future we will be able make

better use of experimental data, existing and forthcom-
ing, to better constrain the SM and search for new ef-
fects. In particular, it appears that we can start to con-
struct a unitarity triangle based primarily on K-physics.
With improvements in the lattice calculations that are
on the horizon and with results from forthcoming K-
experiments a tighter K-UT should soon become avail-
able. It would be very valuable to compare the solution
of such an improved K-UT with the Standard Unitarity
Triangle (SUT) coming primarily from B-physics.
In particular it now seems realistic that lattice calcu-

lations can reduce the errors on Re (✏0/✏) to around 20%
in about 5-years time. It may therefore be timely for the
experimental community to plan an improved determina-
tion of Re (✏0/✏), the current experimental errors on that
quantity being around 15%.
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Figure 1. Error budgets for the branching ratio observables B(K+ → π+νν̄) and B(KL → π0νν̄).
The remaining parameters, which each contribute an error of less than 1%, are grouped into the
“other” category.

dominates but the ones from |Vcb| and γ are also large. The remaining parameters, which

each contribute an error of less than 1%, are grouped into the “other” category.

For convenience we give the following parametric expressions for the branching ratios

in terms of the CKM inputs:

B(K+ → π+νν̄) = (8.39± 0.30)× 10−11 ·
[

|Vcb|
40.7× 10−3

]2.8[ γ

73.2◦

]0.74
, (3.10)

B(KL → π0νν̄) = (3.36± 0.05)× 10−11 ·
[

|Vub|
3.88× 10−3

]2[ |Vcb|
40.7× 10−3

]2[ sin(γ)

sin(73.2◦)

]2
.

(3.11)

The parametric relation for B(KL → π0νν̄) is exact, while for B(K+ → π+νν̄) it gives an

excellent approximation: for the large ranges 37 ≤ |Vcb| × 103 ≤ 45 and 60◦ ≤ γ ≤ 80◦

it is accurate to 1% and 0.5%, respectively. In the case of B(K+ → π+νν̄) we have

absorbed |Vub| into the non-parametric error due to the weak dependence on it. The exact

dependence of both branching ratios on |Vub|, |Vcb| and γ is shown in figure 2.

In order to obtain the values of εK , SψKS , ∆Ms,d and of the branching ratios for

Bs,d → µ+µ− we use the known expressions collected in [16], together with the parameters

listed in table 2. The “bar” on the Bs → µ+µ− branching ratio, B(Bs → µ+µ−), denotes an

average over the two mass-eigenstates, as measured by experiment, rather than an average

over the two flavour-states, which differs in the Bs system [58–60].

In table 1 we show the results for theK+ → π+νν̄ andKL → π0νν̄ branching ratios and

other observables, for three choices of the pair (|Vub|, |Vcb|) corresponding to the exclusive

determination (3.1), the inclusive determination (3.2) and our average (3.3). We use (3.4)

for γ in each case. We observe:

• The uncertainty in B(K+ → π+νν̄) amounts to more than 10% and has to be de-

creased to compete with future NA62 measurements, but finding this branching ratio

in the ballpark of 15× 10−11 would clearly indicate NP at work.
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Sensitivity of K → πνν*

Flavor physics  ��   High scale SUSY 

mq'='10'TeV'~'K → πνν 

!    Can'K → πνν be enhanced even in the high scale SUSY?    

suggestion from LHC result Rare and (theoretically) clean process  

Strategy 

4 Left-Right operators at work 20

Figure 7. B(KL ! ⇡0⌫⌫̄) versus B(K+ ! ⇡+⌫⌫̄) for MZ0 = 500 TeV in L+R scenario. The
colours are as in (23)–(26). The four red points correspond to the SM central values of the four
CKM scenarios, respectively. The black line corresponds to the Grossman-Nir bound. The gray
region shows the experimental range of B(K+ ! ⇡+⌫⌫̄))

exp

= (17.3+11.5
�10.5)⇥ 10�11.

projections for 2024 in Table 1, we get

Mmax
Z0 (K) ⇡ 2000TeV, Mmax

Z0 (Bs) ⇡ Mmax
Z0 (Bd) ⇡ 160TeV , (40)

so that Mmax
Z0 in Bs and Bd systems are comparable in spite of the di↵erence in the

factors K(M) in (39).

4.3 Numerical analysis

Our analysis of this scenario follows the one of Section 3.3 except that now we may
ignore the �F = 2 constraints and increase all left-handed quark couplings (in the
case of the dominance of left-handed currents) to

�sd
L = 3.0 ei�

sd
L , �bd

L = 3.0 ei�
bd
L , �bs

L = 3.0 ei�
bs
L (41)

with arbitrary phases �ij
L . For the lepton couplings we use the values given in (22).

In Fig. 7 we show the correlation between B(KL ! ⇡0⌫⌫̄) and B(K+ ! ⇡+⌫⌫̄)
for the four scenarios a) � d) for (|Vcb|, |Vub|) and MZ0 = 500TeV. The pattern of
correlations in Fig. 7 is very di↵erent from the one in Fig. 3 as now the phase of
the NP contribution to "K is generally not twice the one of the NP contribution
to K+ ! ⇡+⌫⌫̄ and KL ! ⇡0⌫⌫̄. Therefore, as already discussed in general terms
in [86] the two branch structure seen in Fig. 3 is absent here. In particular, it is
possible to obtain values for B(KL ! ⇡0⌫⌫̄) and B(K+ ! ⇡+⌫⌫̄) that are outside
the two branches seen in Fig. 3 and that di↵er from the SM predictions. This
feature could allow us to distinguish these two scenarios. It should also be added
that without �F = 2 constraints NP e↵ects at the level of the amplitude decrease
quadratically with increasing MZ0 so that for MZ0 = 1000TeV NP would contribute
only at the 15% level. While such small e↵ects are impossible to detect in other
decays considered by us, the exceptional theoretical cleanness of K+ ! ⇡+⌫⌫̄ and
KL ! ⇡0⌫⌫̄ could in principle allow to study such e↵ect one day. On the other
hand for MZ0 = 200TeV the enhancements of both branching ratios could be much
larger than shown in Fig. 7. This would require higher fine-tuning in the �F = 2
sector as seen in Fig. 6.

e.g.)Tree'level'flavor'changing'Z’'model

K'→'πνν'is'sensi\ve'to'high'
scale'up'to'2000'TeV'

[Buras'et'al'’14]!  K'→'πνν'is'sensi\ve'to'high'scale'NP'

� this talk 



!  We'consider'split'family'supersymmetric'model'

'3rd''family'of'squark'is'heavy.'
'1st'&'2nd''family'of'squark'are'rela\vely'light.'

!  LR'mixing'

Mass*spectra

!  mass'spectra'':''

m'q3''''''''10'TeV'''''mq6'''''''11'TeV'~'

mq1'''''''2'TeV'''''mq4'''''''2'TeV'''~'
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M1''''''0.5'TeV'
M2''''''1'TeV'
M3''''''3'TeV''''

tanβ'''''10'

~'

~'

~'

3'

Mo\vated'by'
#  The'Nambu_Goldstone'fermion'hypothesis'for'quarks'and'leptons'in'the'first'two'

genera\ons'[Mandal,'Nojiri,'Sudano'and'Yanagida'‘11]'
#  Muon'g_2'with'light'SUSY'spectrum'[Ibe,'Yanagida'and''Yokozaki'‘13]'
#  Like_sign'di_muon'anomaly'by'the'D0'[Endo,'Shirai,'Yanagida'‘10]'
#  Higgs'mass'suggests'heavy'stop,'O(10)TeV''



! SMQCD'penguin'('C6')
chromo'magne\c'penguin'('C8g')

EW'penguin'('C8')

!  QCD,'small'

This'is'because'the'Z_qi qj'effec\ve'coupling'is'always'propor\onal'to'SU(2)L'
breaking.''

!    In'K'→'πνν''decay,'the'dominant'contribu\on'to'Z_penguin'comes'from''
'chargino'mediated'one,''and'the'effects'of'gluino'and'neutralino'are'suppressed.'

2 General Formulae and Properties 4

for K

+ ! ⇡

+
⌫⌫̄ and KL ! ⇡

0
⌫⌫̄ can be simultaneously enhanced over their SM value.

Models of this sort would become vital if indeed a more precise SM value of "

0
/" would

turn out to be significantly below the data, while the experimental branching ratios for
K ! ⇡⌫⌫̄ would be enhanced over the SM predictions in (2).

Our paper is organised as follows. In section 2 we collect basic formulae for K

+ !
⇡

+
⌫⌫̄ and KL ! ⇡

0
⌫⌫̄ valid in any extension of the SM and discuss their general prop-

erties. In section 3 we formulate the simple Z and Z

0 models in question. In section 4
we recall some aspects of "

0
/" concentrating on the simplified models of the previous

section. In particular we present two simplified models in which "

0
/", B(K+ ! ⇡

+
⌫⌫̄)

and B(KL ! ⇡

0
⌫⌫̄) can be enhanced simultaneously over their SM values. In section 5

we present formulae for various decays and observables in the simplified models of sec-
tion 3 and discuss their correlations with K

+ ! ⇡

+
⌫⌫̄ and KL ! ⇡

0
⌫⌫̄. This includes

b ! s`

+
`

� transitions, B ! K(K⇤)⌫⌫̄ and KL ! µ

+
µ

�. KL ! µ

+
µ

� plays an impor-
tant role in constraining the allowed values of B(K+ ! ⇡

+
⌫⌫̄). While some numerical

results will be shown already in previous sections the main numerical analysis of the
models of section 3 is presented in section 6. We conclude in section 7.

2 General Formulae and Properties

2.1 General Expressions

The branching ratios for K

+ ! ⇡

+
⌫⌫̄ and KL ! ⇡

0
⌫⌫̄ in any extension of the SM in

which light neutrinos couple only to left-handed currents are given as follows

B(K+ ! ⇡

+
⌫⌫̄) = +(1 + �EM) ·

"✓
Im Xe↵

�

5

◆2

+

✓
Re �c

�

Pc(X) +
Re Xe↵

�

5

◆2
#

, (6)

B(KL ! ⇡

0
⌫⌫̄) = L ·

✓
Im Xe↵

�

5

◆2

, (7)

where [13]

+ = (5.173 ± 0.025) · 10�11


�

0.225

�8
, �EM = �0.003 , (8)

L = (2.231 ± 0.013) · 10�10


�

0.225

�8
. (9)

and �i = V

⇤
isVid are the CKM factors. For the charm contribution, represented by Pc(X),

the calculations in [7–9,12,13] imply [18]

Pc(X) = 0.404 ± 0.024, (10)

where the error is dominated by the long distance uncertainty estimated in [12]. In
what follows we will assume that NP does not modify this value, which turns out to be
true in all extensions of the SM we know about. Such contributions can be in any case
absorbed into the function Xe↵ . The latter function that describes pure short distance
contributions from top quark exchanges and NP is given by

Xe↵ = V

⇤
tsVtd(XL(K) + XR(K)) ⌘ V

⇤
tsVtdX

SM
L (K)(1 + ⇠e

i✓). (11)

Z'penguin
focus'on'chargino'Z'penguin

Chargino Z penguin 
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focus'on'chargino'Z'penguin

QCD'penguin'('C6')
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EW'penguin'('C8')

!  QCD,'small'

Chargino Z penguin 
!    In'K'→'πνν''decay,'the'dominant'contribu\on'to'Z_penguin'comes'from''
'chargino'mediated'one,''and'the'effects'of'gluino'and'neutralino'are'suppressed.'

2 Basic formulae 10

We also note that while equation (38) is identical to (5.10) in [10], the definition of B(3/2)
8

in the present paper di↵ers from [10] [cf (5.18) there]. This is to ensure that B(1/2)
6

= 1

and B
(3/2)
8

= 1 both correctly reproduce the large-N limit of QCD. In contrast, (5.18)
in [10] was based on the so-called vacuum insertion approximation, in which additional

terms appear in the normalisation of B(3/2)
8

. Such terms misrepresent the large-N limit
of QCD. With our conventions, 1/N corrections in (38) and (39) are represented by the

departure of B(1/2)
6

and B
(3/2)
8

from unity. They have been investigated in [22] and very
recently in [24] with the result summarised in (4). We refer to this paper for further
details.

We now turn to the parameter q which enters (33). We first note that, like B(1/2)
6

and

B
(3/2)
8

, it is nearly renormalisation-scale independent. Its value can be estimated in the
large-N approach [17]; as this approach correctly accounts for the bulk of the experimental
value of ReA

0

, the ensuing estimate can be considered a plausible one. In the large-N
limit, corresponding to µ = 0, one finds first hQ

+

(0)i
0

/hQ�(0)i0 = 1/3. Using the meson
evolution in [17] up to µ = 1.0GeV and then quark evolution up to µ = mc, multiplying
the result by z

+

(mc)/z�(mc), we obtain q ⇡ 0.1. On the other hand the results of the
RBC-UKQCD collaboration [25] are consistent with a value of zero (q = 0.029 ± 0.087).
As the large-N approach gives ReA

0

below the data while [25] above it, we expect the
true value of q at µ = mc to lie between these two estimates and will take q in the range

0  q  0.1 . (46)

We consider this a credible range, but already mention that our phenomenological results
below would change very little even if we enlarged this range by a factor of a few: q is
simply too small to introduce a large error on "0/".

Our input parameters including sub-leading hadronic parameters defined in Appendix
A are collected in Table 2. Regarding Im�t, we choose a central value between the UT-
fit [35] and CKMfitter [36] determinations and an error slightly larger than that obtained
from either fit. This is to account for the very small errors on Vud and Vus, which we fix to
PDG central values [32]. The Wilson coe�cients in Table 1 come with an additional un-
certainty from unknown higher-order corrections. In particular the threshold corrections
at mc can be substantial even at NNLO. This can for example be seen in the perturbative
convergence of "K [14,37]. We use a scale variation to establish the typical size of higher
order corrections and estimate a 10% uncertainty for each Wilson coe�cient y

3

– y
10

of
Table 1.

2.4 Convenient formula for "0/"

Before turning to quantitative phenomenology, in order to make easier connection
with the phenomenological literature and aid discussion of our results, we summarise
the discussion so far in a concise formula (derived first in [10]) for "0/" that exhibits

the sensitivity to the two most important hadronic matrix elements B
(1/2)
6

and B
(3/2)
8

transparently.
Using the e↵ective Hamiltonian (9) and the experimental data for !, ReA

0

and "K ,
we find

"0

"
= a Im�

t

·
⇥ �

1� ⌦
e↵

�
P (1/2) � P (3/2)

⇤
, (47)
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and �i = V

⇤
isVid are the CKM factors. For the charm contribution, represented by Pc(X),

the calculations in [7–9,12,13] imply [18]

Pc(X) = 0.404 ± 0.024, (10)

where the error is dominated by the long distance uncertainty estimated in [12]. In
what follows we will assume that NP does not modify this value, which turns out to be
true in all extensions of the SM we know about. Such contributions can be in any case
absorbed into the function Xe↵ . The latter function that describes pure short distance
contributions from top quark exchanges and NP is given by

Xe↵ = V

⇤
tsVtd(XL(K) + XR(K)) ⌘ V

⇤
tsVtdX

SM
L (K)(1 + ⇠e

i✓). (11)

Z'penguin

!  Chargino'Z'penguin'contributes'not'only''K_>πνν'but'also'ε’/ε'and'Bq'_>μμ''
'                  _>'correlate'to'each'other'

This'is'because'the'Z_qi qj'effec\ve'coupling'is'always'propor\onal'to'SU(2)L'
breaking.''



sd23'

Parameter*setup*and*Constraints
!  Bd':'  |s13|2,'''light'1st'squark'
!  Bs':'    |s23|2,''light'2nd'squark'

# K'meson''
'''''εK'
# B'meson'
'''''ΔMd'''&''sin2β'
# Bs'meson'
''''''ΔMs''&''sin2βs'
# b'decay'
'''''BR(b→sγ)'

d b

s13'

s13'

~ ~g~
b_ d

_

dd

!  εK'and'ΔMK':'

d s's12'

s12'

~ ~g~
s'_ d

_
ss

d s's13'

s13'

~ g~
s'_ d

_
b

s23'

s23'

~b

!  Z'penguin'(KL→πνν'&'ε’)':'

s12'
~'u'

s23' s13'
~t

↑single*mixing*effect*is*minor*

's13×s23,'heavy'3rd'squark|s12|2,'''light'1st'&'2nd'squark'

s12'','1st&2nd'squark s13×s23,'3rd'squark'

#  SUSY'effects'appear'in'B'system'due'to'light'1st'&'2nd'squark'
#  Kaon'rare'decay''

'neglect'S12'

'constrain'to'S13' O(10_2)'
'S23' O(10_2)'

!  ΔF=2'(εK'and'ΔMK'):' 's13×s23,'3rd'squark

d s's13'

s13'

~
s'_ d

_
'

s23'

s23'

~X±' '

[Colangelo'and'Isidori'‘98']''

effect of chargino ; 1 

'neglect's12'mixing'and'
only'consider's23'and's13'
' 'combina\on's23*s13'
brings's_>d'transi\on''

sij':'mixing'btwn'i'
genera\on'&'j'one'

" Mixing'dependence'

X±'



Constraints from εK & ΔMK 

!  To'solve'the'ε’'anomaly,''''
!  ε’*anomaly**

!  Gluino'box'diagram'(g_b_b'interac\on)'
'        Dominant'supersymmetric'term'in'εK.'It'depends'on'down'type'mixing'.'
''''''Because'we'focus'on'Z'penguin'effect,'we'neglect'the'down'type'mixing.''''''

~ ~

!  εK''

!  ΔMK'

'to'avoid'ΔMK'constraint'
''''''''''s23,'s13'<'0.3'
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the latter paper we require that values of observables in question satisfy the following
constraints

16.9/ps  �Ms  18.7/ps, �0.20  S �  0.20, (94)

0.48/ps  �Md  0.53/ps, 0.64  S KS  0.72. (95)

0.75  �MK

(�MK)SM
 1.25, 2.0 ⇥ 10�3  |"K |  2.5 ⇥ 10�3. (96)

The larger uncertainty for "K than �Ms,d signals its strong |Vcb|4 dependence. �MK has
even larger uncertainty because of potential long distance uncertainties. When using
the constraint from S � and S KS we take into account that only mixing phases close
to their SM value are allowed by the data thereby removing some discrete ambiguities.

Parametrizing the di↵erent flavour violating couplings of Z 0 to quarks as follows

�bs
L (Z 0) = �s̃23e

�i�23 , �bd
L (Z 0) = s̃13e

�i�13 , �sd
L (Z 0) = �s̃12e

�i�12 , (97)

it was possible to find the allowed oases in the spaces (s̃ij, �ij) used to describe Z 0 e↵ects
in each system. The minus sign is introduced to cancel the one in Vts.

In the case of B0
s � B̄0

s system the result of this search for MZ0 = 1 TeV and LHS1
scenario is shown in Fig. 10. The red regions correspond to the allowed ranges for �Ms,
while the blue ones to the corresponding ranges for S �. The overlap between red and
blue regions (light blue and purple) identifies the oases we were looking for. We observe
that the requirement of suppression of �Ms implies s̃23 6= 0. As this system is immune
to the value of |Vub| the same results are obtained for LHS2.

We note that for each oasis with a given �23 there is another oasis with �23 shifted
by 180� but the range for s̃23 is unchanged. This discrete ambiguity results from the
fact that �Ms and S � are governed by 2�23. This ambiguity can be resolved by other
observables discussed in the next steps. The colour coding for the allowed oases, blue
and purple for oasis with small and large �23, respectively, will be useful in this context.

The corresponding oases for B0
d � B̄0

d and K0 � K̄0 systems are shown in Figs. 11
and 12, respectively. We note that now the results depend on whether LHS1 or LHS2
considered. Moreover in accordance with the quality of the constraints in (94)-(96), the
allowed oases in the B0

d � B̄0
d system are smaller than in the B0

s � B̄0
s system, while

they are larger in the K0 � K̄0 system. The colour coding for allowed oases in these
figures will be useful to monitor the following steps in which rare Bd and K decays
will be discussed and the distinction between the two allowed oases in each case will be
possible.

In [40] also the allowed oases in scenarios RHS, LRS and ALRS have been considered.
We summarize here the main results and refer for details to this paper:

[Buras'et'al,'1306.3775]''

'need'phase'tuning'

chargino'Z'penguin’s'phase'dependence'''

" Mixing'dependence'



!  To'solve'the'ε’'anomaly,'we'need'large'chargino'Z'penguin'''''

!  ε’*anomaly*

'Maximal'arg('PZ(X±)')

!  Large'enhancement'ε’/ε'implies'suppressed'KL_>π0νν' PZ(X±)|'~'  twice'×' PZ(W±)|'

chargino'Z'penguin’s'phase'dependence'''

Relation between ε’/ε and K→πνν 



Other parameters 

!  Chargino'box'diagram'(X_t_t'interac\on)'need'phase'tuning''

!  LR'mixing'

!  μ/M2'dependence'

1.0 1.5 2.0 2.5 3.0
0

5.×10-11
1.×10-10
1.5×10-10
2.×10-10
2.5×10-10
3.×10-10

μ/M2

B
R
(K

L-
>π

0 ν
ν)

Sij=0.3
Sij=0.2
Sij=0.1

●
●
●

'K_>πνν'increase'in'the'region'of'
sizable'mixing'wino'and'higgsino'

'Large'LR'mixing'and'mass'
difference'of'stop'

Γ(q)
L =

⎛

⎜⎝
cqL13 0 sqL13 e

−iφqL
13 cθqLR

0 0 −sqL13 e
−iφqL

13 sθqLR
eiφ

q
LR

−sqL23 s
qL
13 e

i(φqL
13 −φqL

23 ) cqL23 sqL23 c
qL
13 e

−iφqL
23 cθqLR

0 0 −sqL23 c
qL
13 e

−iφqL
23 sθqLR

eiφ
q
LR

−sqL13 c
qL
23 e

iφqL
13 −sqL23 e

iφqL
23 cqL13 c

qL
23 cθqLR

0 0 −cqL13 c
qL
23 sθqLR

eiφ
q
LR

⎞

⎟⎠

T

,

Γ(q)
R =

⎛

⎜⎝
0 0 sqR13 sθqLR

e−iφqR
13 e−iφq

LR cqR13 0 sqR13 e
−iφqR

13 cθqLR

0 0 sqR23 c
qR
13 sθqLR

e−iφqR
23 e−iφq

LR −sqR13 s
qR
23 e

i(φqR
13 −φqR

23 ) cqR23 sqR23 c
qR
13 e

−iφqR
23 cθqLR

0 0 cqR13 c
qR
23 sθqLR

e−iφq
LR −sqR13 c

qR
23 e

iφqR
13 −sqR23 e

iφqR
23 cqR13 c

qR
23 cθqLR

⎞

⎟⎠

T

,

(19)

where we use abbreviations cqL,qRij = cos θqL,qRij , sqL,qRij = sin θqL,qRij , cθq = cos θq and sθq =

sin θq. In this mixing matrices, we take sqL,qR12 = 0. This expressions contain only the left-
right mixing angle in 3rd generation θqLR and mixing between 1st and 3rd sqL,qR13 , 2nd and
3rd of squarks sqL,qR23 . In our paper, we call sqL,qRij as mixing parameters. The charged-lepton

sector also has same structure of the mixing matrices Γ(ℓ)
L(R) as the quark one. For the neutrino

sector, there is only the left-handed Γ(ν)
L . The left-right mixing angle θqLR is defined as

θbLR ≃ mb(A0 − µ tan β)

m2
b̃L

−m2
b̃R

, θtLR ≃ mt(A0 − µ cot β)

m2
t̃L
−m2

t̃R

. (20)

Appendix C : Chargino interaction induced Z-penguin

The Z -penguin amplitude mediated the chargino, P sd
ZL(χ

±) in our basis [69] is given as follows:

P sd
ZL(χ

±) =
g22

4m2
W

∑

α,β.I,J

(Γ(d)†
CL )Iαd(Γ

(d)
CL)

βs
J

{
δJI (U

†
+)

1
β(U+)

α
1 [log xµ0

I + f2(x
I
α, x

I
β)] (21)

− 2δJI (U
†
−)

1
β(U−)

α
1

√
xI
αx

I
βf1(x

I
α, x

I
β)− δαβ

(
Γ̃(u)
L

)J

I
f2(x

α
I , x

α
J)
}
, (22)

where

(Γ(d)
CL)

αq
I ≡ (Γ(u)

L VCKM)
q
I(U+)

α
1 +

1

g2
(Γ(u)

R f̂UVCKM)
q
I(U+)

α
2 , (23)

and (
Γ̃(u)
L

) J

I
≡

(
Γ(u)
L Γ(u)†

L

) J

I
, (24)

with q = s, d, I = 1− 6 for up-squarks, and α = 1, 2 for charginos.
The right-handed Z penguin one, P sd

ZR(χ
±) is also given simply by replacements between

L and R, etc. [69]

15

m' 1':'10'TeV'''''m 2'':'11'TeV'~' ~'

θLR,'u=0.3'

!  Mass'difference'between'stop't1'&'t2'
~' ~'

μ/M2'='1.5' 2.5'



●:'our'predic\on

Numerical*results*1*;**

Mixing'parameters'
suL,'12=suR,'12=0''

'      suL,'13=0.3,'suR,'13=0'            '
''    suL,'23=0.3,'suR,'23=0'
LR'mixing'
''''θLR,'u=0.3'
μ'/M2='1.5' '2.5'
CKM'input':'best'fit'value'''
B6'&'B8':'3σ'

Due'to'the'effect'of' 13'&'s23,''
''sensi\ve'to'real'effect':'K+'
''insensi\ve'to'imaginary'effect':'εK,'KL'

'Δ'is'determined'by'K+'
''''''K+'<'exp.3σ ' Δ'<'3%'''

#  Effect'of'mixing'bwn'1st'and'3nd'family'of'squark'':s13'
'                                                and'2st'and'3nd'family'of'squark'':s23'

'comment'on'C8gSUSY 

BR(KL_>πνν)'<''2×10_10''
BR(K+_>πνν)'<'2'×10_10

Exp.'3σ

●:'SM'predic\on

SM

!  SUSY   | P Ht H '
!  A _>'SUSYH MD :P '
' A '_>''

#  epsilon'kH P'

!  Predicted'region':'

!  Input'parameter':'

↓'with'constraint'from'εK'

KL*→*π0νν*vs*K+*→*π+νν*
Work'in'progress

[M'Tanimoto,'KY,1603.XXXX]'



●:'our'predic\on

Work'in'progress

BR(KL_>πνν)'<'3×10_11 ε’/ε'

Exp.'3σ

●:'SM'predic\on

!  Predicted'region':'

[M'Tanimoto,'KY,1603.XXXX]'
Numerical*results*2*;** K*→*πνν*vs*ε’/ε'

!  Predicted'region':'

Exp.'1σ

Mixing'parameters'
suL,'12=suR,'12=0''

'      suL,'13=0.3,'suR,'13=0'            '
''    suL,'23=0.3,'suR,'23=0'
LR'mixing'
''''θLR,'u=0.3'
μ'/M2='1.5' '2.5'
CKM'input':'best'fit'value'''
B6'&'B8':'3σ'

!  Input'parameter':'



Numerical*results*

Numerical*results*3*;** KL*→*π0νν*vs*Bq*→*μμ'

BR(KL_>πνν)'<'3×10_11 ε’/ε'!  Predicted'region':'

SM*

Exp

Exp.'1σ

Exp.'1σ

Work'in'progress

[M'Tanimoto,'KY,1603.XXXX]'

Mixing'parameters'
suL,'12=suR,'12=0''

'      suL,'13=0.3,'suR,'13=0'            '
''    suL,'23=0.3,'suR,'23=0'
LR'mixing'
''''θLR,'u=0.3'
μ'/M2='1.5' '2.5'
CKM'input':'best'fit'value'''
B6'&'B8':'3σ'

!  Input'parameter':'



Summary*
!  Kaon'physics'offers'a'powerful'probe'of'NP'beyond'the'SM.''

!  Correla\ons'among'flavor'observables'can'be'used'for'the'
discrimina\on'of'NP'models.'

!  The'measurements'of'K'→'πνν'will'complement'model'
discrimina\on.'

!  Rare'Kaon'decays'K'→'πνν'are'theore\cally'very'clean'and'
sensi\ve'to'NP'at'a'very'high'scale,'which'is'not'accessible'at'
the'LHC.'

!  We'have'presented'correla\ons'between'K_>πνν','ε’/ε'and''
  Bq'_>μμ'in'a'split_family'supersymmetric'model.'

'      K_>πνν'can'be'enhanced'even'in'the'high'scale'SUSY,'10'TeV.''

Belle9II��LHCb,)KOTO)and)NA62)results)coming)soon):)exi&ng)future)�waits)!))


