Dark Matter in Modified Gravity?

Taishi Katsuragawa and Shinya Matsuzaki Department of Physics, Nagoya University

Introduction

What is Modified Gravity?

= Broader class of gravitational theory

General Relativity + Modification of GR

Modification leads to emergence of new DOF.

= Expressed in terms of new field (new gravitational force = the fifth force)

F(R) Gravity

Action
$$S = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} F(R)$$

Weyl transformation $\tilde{g}_{\mu\nu} = \Omega^2(x) g_{\mu\nu}$
$$S = \frac{1}{2\kappa^2} \int d^4x \sqrt{-\tilde{g}} \tilde{R}$$
$$+ \int d^4x \sqrt{-\tilde{g}} \left[-\frac{1}{2} \tilde{g}^{\mu\nu} \left(\partial_\mu \varphi \right) \left(\partial_\nu \varphi \right) - V(\varphi) \right]$$

Scalaron field $\varphi(x)$ appears.

Methods and Results

<u>Chameleon Mechanism</u>

EOM of Scalaron $\Box \varphi = V'_{\text{eff}}(\varphi)$ where $V_{\text{eff}}(\varphi) = V(\varphi) - \frac{1}{4}e^{-4\sqrt{1/6}\kappa\varphi}T^{\mu}_{\mu}$ Scalaron potential couples with $T_{\mu\nu}$ The mass $m_{\varphi}^2 = V''_{\text{eff}}(\varphi_{\min})$ depends on the environment.

For large ρ , the scalaron becomes heavy.

<u>Why Modified Gravity?</u>

New field can generate the late-time accelerated expansion of the Universe.

= Dynamical dark energy

When the new field is quantized, new particle shows up from modified gravity.

Then, a question naturally arises

"New particle derived from the modification of gravity can be a Dark Matter?"

Motivations

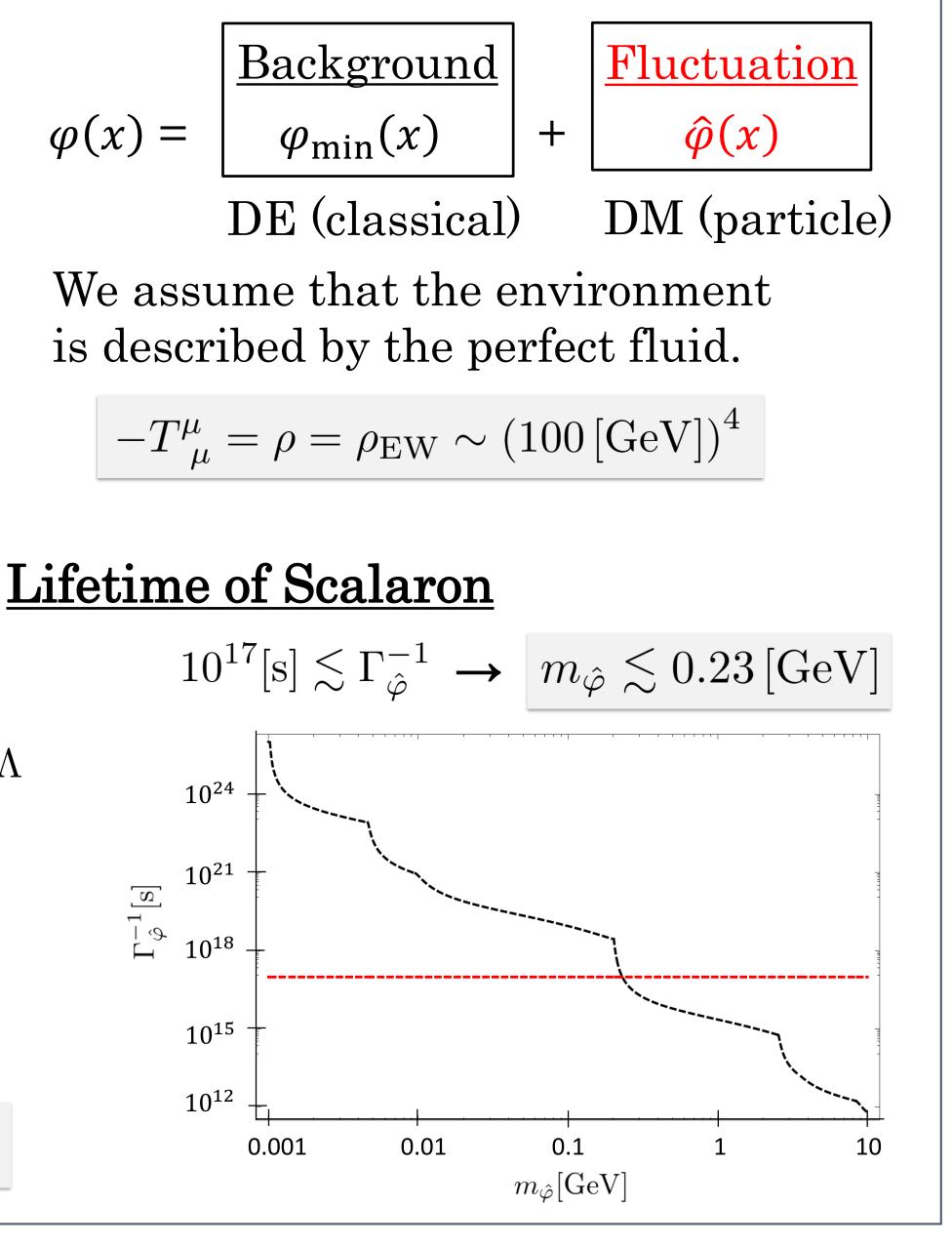
<u>New Dark Matter Candidate</u>

Viable modified gravity theories possess screening mechanism.

It suppresses the fifth force in order to avoid local tests of gravity although the new field acts as DE at cosmological scale.

$\begin{aligned} \mathbf{S}_{\text{Matter}} &= \int d^4x \sqrt{-\tilde{g}} \, \mathrm{e}^{-4\sqrt{1/6}\kappa\varphi} \\ &\times \mathcal{L}_{\text{Matter}} \left(g^{\mu\nu} = \mathrm{e}^{2\sqrt{1/6}\kappa\varphi} \tilde{g}^{\mu\nu}, \Psi \right) \end{aligned}$

Dilatonic couplings show up. = Suppressed by Planck mass $e^{\kappa \varphi} \sim 1 + \kappa \varphi$


Weak coupling with SM particles

Constraint on F(R) Gravity The Starobinsky model

F(R) $\approx R - \beta R_c + \beta R_c \left(\frac{R}{R_c}\right)^{-2n}$ where $\beta R_c \approx 2\Lambda$ The scalaron mass is given by

$$m_{\hat{\varphi}}^2 \approx \frac{2\Lambda}{6n(2n+1)\beta^2} \left(\frac{\kappa^2\beta}{2\Lambda}\rho_{\rm EW}\right)^{2(n+1)\beta^2}$$

Particle Picture of Scalaron

Thus, new field depends on environment; it is dynamical DE at cosmological scale, while it is a DM candidate at smaller scales.

<u>New Constraint on Modified Gravity</u>

Many constraints on DM are known (i.e. lifetime, relic abundance, direct search).

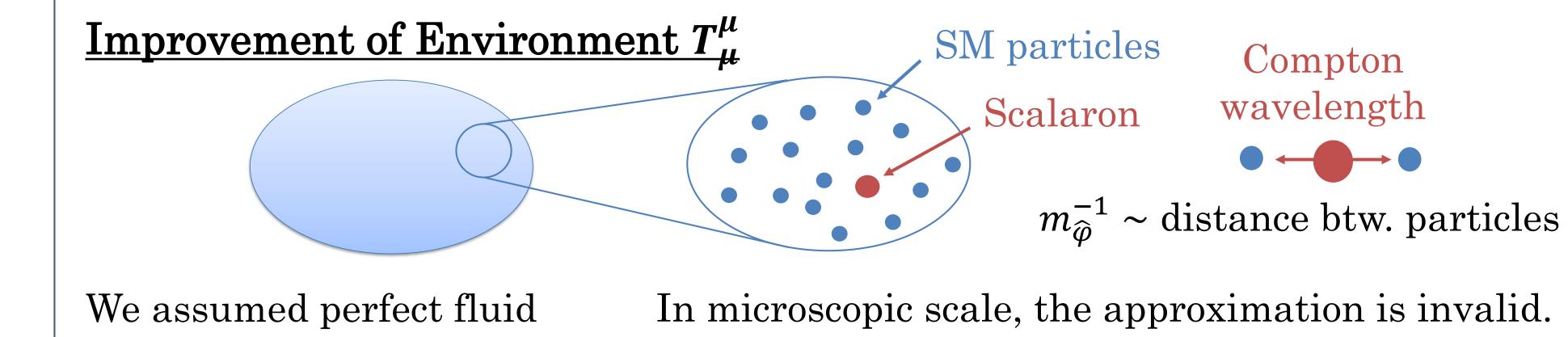
They can be converted into those on the modified gravity.

= To distinguish the modified gravities

Unification of DE and DM

DE and DM have the same origin. = Answer to Coincidence problem? 4.9% DE 68.2% Finally, we obtain

$$\beta < 10^{-69}$$
 for n=1, $\beta < 10^{-59}$ for n=4


Conclusions

We studied the scalaron as a DM candidate derived from F(R) gravity.

We estimated the lifetime of scalaron based on QFT and obtained the constraint on β in the Starobinsky model.

 β is extremely small although $\beta = O(1)$ for compatibility with DE.

= Scalaron is not DM. Or we need to reconsider assumptions in analysis.

One may predie w.r.t. current er	In large	the scalaron. e scale, perfect f mation is OK.	fluid beca	The chameleon mechanism may be weakened because the environment btw. particles is almost vacuum.					

Literature Cited

 T. Katsuragawa and S. Matsuzaki, "Modified Gravity Explains Dark Matter?", arXiv:1610.01016 [gr-qc].
S. Nojiri and S. D. Odintsov, "Can F(R)-gravity be a viable model: the universal unication scenario for inflation, dark energy and dark matter", arXiv:0801.4843 [astro-ph].

Acknowledgements

We are deeply grateful to Shin'ichi Nojiri for his constructive advice and useful comments. This research is supported by the Grant-in-Aid for JSPS Fellows #15J06973 (T.K.), and by the JSPS Grant-in-Aid for Young Scientists (B) #15K17645 (S.M.).