Precise discussion on T-asymmetry with B-meson decays Hiroyuki Umeeda, Takuya Morozumi, Hideaki Okane (Hiroshima Univ.)

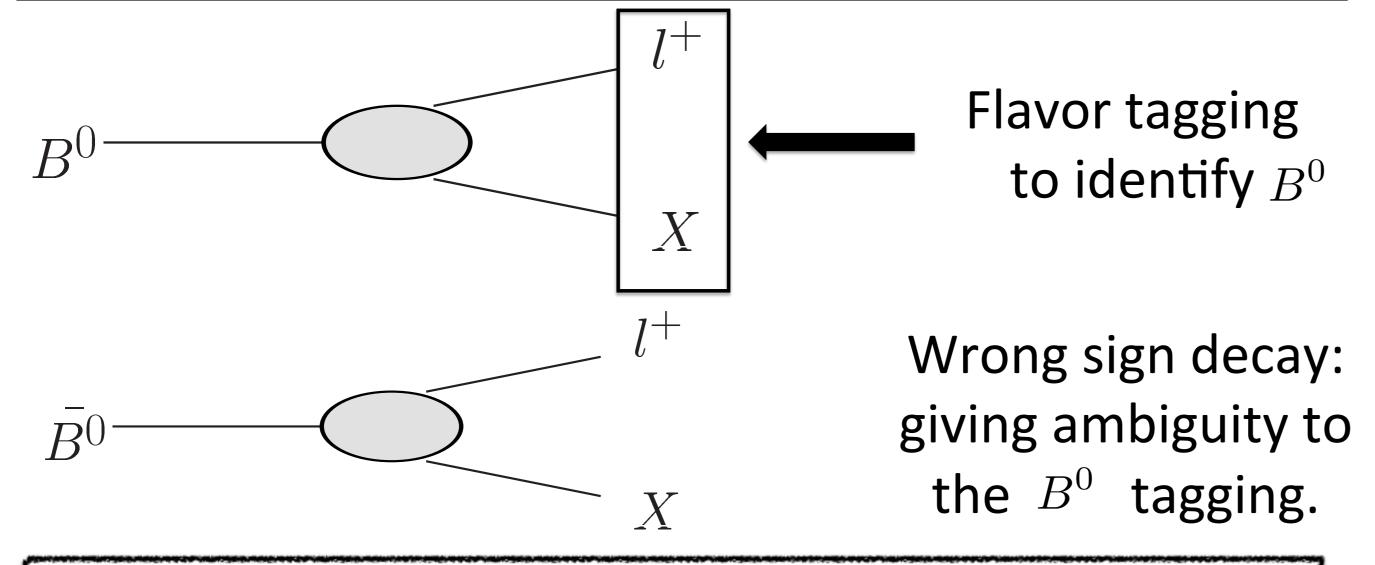
JHEP1502, 174 (2015)[1411.2104]

FPCP2015 @ Nagoya University

Overview

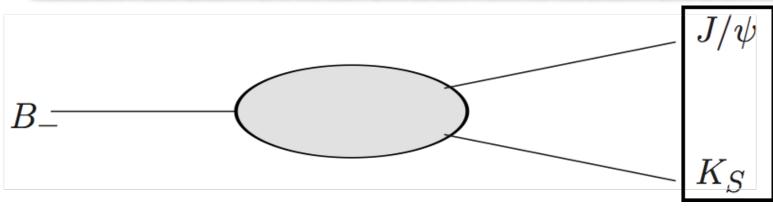
- An asymmetry with B meson decays
- (a) $\vec{B}^0 \rightarrow B$

 $(b) B \longrightarrow \overline{B}^0$


Two processes are naively related with Time Reversal.

Thus, time dependent asymmetry below is naively thought to be a T-violating quantity[1].

$$A_T = \frac{\Gamma_{(a)} - \Gamma_{(b)}}{\Gamma_{(a)} + \Gamma_{(b)}} \simeq T - \text{odd}$$


naive thought

Tagging: Method to identify B mesons

Wrong sign decays cause ambiguity for tagging.

We cannot exactly identify $\,B^0\,$ or $\,\bar{B}^0\,$

We cannot exactly identify B_{-} or B_{+} .

• Effect of ϵ_K should be clarified.

Our viewpoint: Precise discussion

$$A(t) = \frac{\Gamma_{(a)} - \Gamma_{(b)}}{\Gamma_{(a)} + \Gamma_{(b)}} \simeq \mathbf{T} - \text{odd} + \Delta(\mathbf{T} - \text{even})$$

This part reveals.

- Our viewpoint is different from Bernabeu's[1].
- Task: model independent analysis

BaBar Asymmetry

 BaBar announced that they measured T-asymmetry through B meson system.

$$A_T^{\mathrm{BaBar}}(\Delta t) \simeq \frac{\Delta S_T^+}{2} \sin(\Delta m_d \Delta t) + \frac{\Delta C_T^+}{2} \cos(\Delta m_d \Delta t)$$

For observed values $\begin{cases} \Delta S_T^+ = -1.37 \pm 0.14 \pm 0.06 \\ \Delta C_T^+ = 0.10 \pm 0.14 \pm 0.08 \end{cases}$ in the experiment [2]

In the theoretical paper[3],

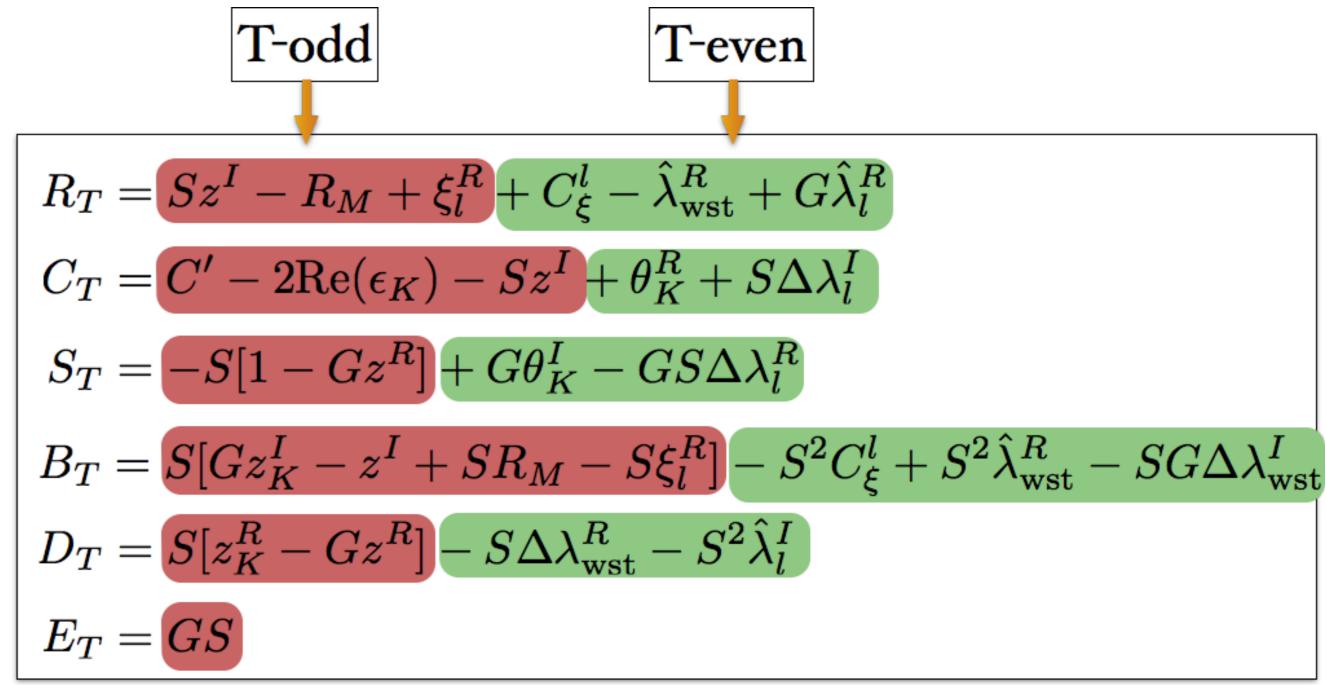
- BaBar asymmetry is slightly deviated from a T-odd.
- ullet BaBar asymmetry is calculated with assumption $\epsilon_K=0$

Asymmetry: Result

$$A_{T} = R_{T} + C_{T} \cos(x\Gamma t) + S_{T} \sin(x\Gamma t)$$

$$+B_{T} \sin^{2}(x\Gamma t) + D_{T} \sin(x\Gamma t) \cos(x\Gamma t) + E_{T}(y\Gamma t) \sin(x\Gamma t)$$

$$\Gamma = \frac{\Gamma_{H} + \Gamma_{L}}{2} \qquad x = \frac{M_{H} - M_{L}}{\Gamma} \qquad y = \frac{\Gamma_{H} - \Gamma_{L}}{2\Gamma}$$


Definition is different from BaBar asymmetry.

$$\Gamma_{(a)} = N_{(a)}e^{-\Gamma_d\Delta t}[1 + S_{\psi K_L, l^+}^+ \sin(\Delta m_d \Delta t) + C_{\psi K_L, l^+}^+ \cos(\Delta m_d \Delta t)] = N_{(a)}\Gamma'_{(a)}$$

$$\Gamma_{(b)} = N_{(b)}e^{-\Gamma_d\Delta t}[1 + S_{l^-, \psi K_S}^+ \sin(\Delta m_d \Delta t) + C_{l^-, \psi K_S}^+ \cos(\Delta m_d \Delta t)] = N_{(b)}\Gamma'_{(b)}$$

Overall nomalizations are removed in BaBar asym.

$$A_T^{\text{BaBar}} = \frac{\Gamma'_{(a)} - \Gamma'_{(b)}}{\Gamma'_{(a)} + \Gamma'_{(b)}}$$

- In C_T , contribution from ϵ_K is extracted.
- All are expressed as phase convention independent parameters.
- © We investigate the reason why T-even parts are allowed to contribute.

Conditions for Authentic Time Reversed Process

(1) B meson states' equivalence[3]

- (2) Overall normalization
- Since overall normalization difference is included, $N_{(b)}/N_{(a)}$ contributes to the asymmetry. One also requires $N_{(b)}/N_{(a)}$ be T-odd.

When these two conditions are satisfied, T-even terms vanish.

Summary

- The event number asymmetry of B meson system is constructed.
- The asymmetry in our study takes account of overall factors of the two processes.
- The observables are written as phase conv. indep. parameters.
- The result shows the asymmetry is slightly deviated from T-odd.
- \blacksquare The contribution from ϵ_K is investigated.
- When the two conditions are satisfied, asym. is a T-odd quantity.