vent Generation

Unfolding 0000000 0000000 Event Subtraction

Outlook O

Generative Neural Networks for LHC Applications

Anja Butter

ITP, Universität Heidelberg

arXiv:1907.03764, 1912.08824, and 1912.00477

with Marco Bellagente, Gregor Kasieczka, Tilman Plehn, und Ramon Winterhalder

vent Generation 000000000000 00000000 Unfolding 0000000 0000000 Event Subtraction

Outlook O

Going beyond simple classification

• Classification is a solved problem

vent Generation 000000000000 00000000 Unfolding 0000000 0000000 Event Subtraction

Outlool

Going beyond simple classification

- Classification is a solved problem
- Building a full toolbox

• ...

- Classification for density estimation
- Tracking challenge
- Decorrelating variables
- Anomaly detection
- Estimating uncertainties
- Generative models for event generation and Detector simulation

vent Generation

Unfolding 0000000 0000000 Event Subtraction

Outlook

Phase-Space Sampling

Monte Carlo simulations at the heart of any LHC analysis

vent Generation

Unfolding 0000000 0000000 Event Subtraction

Outlook

Phase-Space Sampling

Monte Carlo simulations at the heart of any LHC analysis

Problem: High-dimensionality and rich phase-space structures

Task: Finding an optimal phase-space mapping

 \rightarrow Computationally time consuming

vent Generation

Unfolding 0000000 0000000 Event Subtraction

Outlook

Phase-Space Sampling

Monte Carlo simulations at the heart of any LHC analysis

Problem: High-dimensionality and rich phase-space structures

Task: Finding an optimal phase-space mapping

 \rightarrow Computationally time consuming

How to generate events more efficiently? \rightarrow Neural networks! Unfolding 0000000 0000000 Event Subtraction

Neural Networks for Event Generation?

- Input: random numbers
- Output: unweighted events
- Training data:
 - unweighted MC events or real data
 - can include parton showers, hadronization and detector effects

Event Generation •0000000000 000000000 Unfolding 0000000 0000000 Event Subtraction

Outlook

Neural Networks for Event Generation?

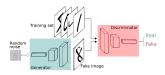
- Input: random numbers
- Output: unweighted events
- Training data:
 - unweighted MC events or real data
 - can include parton showers, hadronization and detector effects

Network architecture? \rightarrow generative neural network

Event Generation

Unfolding 0000000 0000000 Event Subtraction

Generative networks



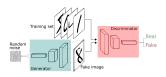
GANs

Event Generation

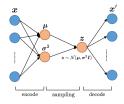
Unfolding 0000000 0000000 Event Subtraction

Outlool

Generative networks



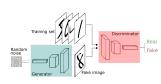
GANs

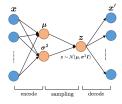


VAEs

Event Generation 0000000000 000000000 Unfolding 0000000 0000000 Event Subtraction

Generative networks





GANs

all kinds of hybrids

VAEs

Anja Butter

Event Generation

Unfolding 0000000 0000000 Event Subtraction

Outlool

Generative networks



GANs

VAE-GAN

VAEs

Event Generation

Unfolding 0000000 0000000 Event Subtraction

Why GANs?

they are hard to train

Event Generation

Unfolding 0000000 0000000 Event Subtraction

Why GANs?

• Many people think they are hard to train

 Unfolding 0000000 0000000 Event Subtraction

Why GANs?

• Many people think they are hard to train

• Generate better samples than VAE

 Unfolding 0000000 0000000 Event Subtraction

Why GANs?

• Many people think they are hard to train

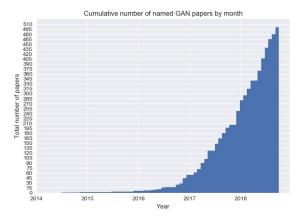
• Generate better samples than VAE

• Large community working on GANs

Event Generation

Unfolding 0000000 0000000 Event Subtraction

Outlool



Explosive growth — All the named GAN variants cumulatively since 2014. Credit: Bruno Gavranović

\rightarrow Check out the GAN zoo!

Event Generation

Unfolding 0000000 0000000 Event Subtraction

Why GANs?

• Many people think they are hard to train

• Generate better samples than VAE

• Large community working on GANs

Event Generation

Unfolding 0000000 0000000 Event Subtraction

Why GANs?

• Many people think they are hard to train

• Generate better samples than VAE

Large community working on GANs

• It really isn't that hard...

In	tr	00	lι	IC	ti	0	n
0	0						

 Unfolding 0000000 0000000

- A lot of experience as a community!
 - Jet Images de Oliveira et al. [1701.05927], Carazza et al. [1909.01359],
 - Particle shower in Calorimeters Paganini et al. [CaloGAN, 1705.02355, 1712.10321],

Musella et al. [1805.00850], Erdmann et al. [1807.01954],

ATLAS [ATL-SOFT-PUB-2018-001, ATL-SOFT-PROC-2019-007]

Event generation - Otten et al. [1901.00875], Hashemi et al. [1901.05282],

Di Sipio et al. [1903.02433], Butter et al. [1907.03764], Martinez et al. [1912.02748], Alanazi et al. [2001.11103]

- Unfolding Datta et al. [1806.00433], Bellagente et al. [1912.0047]
- Templates for QCD factorization Lin et al. [1903.02556]
- EFT models Erbin et al. [1809.02612]
- Event subtraction Butter et al. [1912.08824]
- . . .

Event Generation

Unfolding 0000000 0000000 Event Subtraction

Outlook

Generative Adversarial Networks

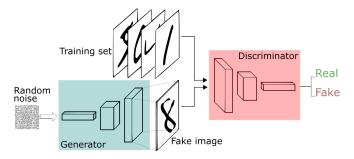
GAN: two competing networks \rightarrow generator and discriminator

Event Generation

Unfolding 0000000 0000000 Event Subtraction

Generative Adversarial Networks

GAN: two competing networks \rightarrow generator and discriminator

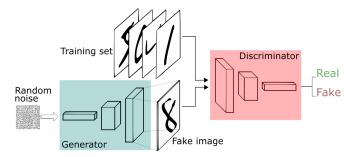


Event Generation

Unfolding 0000000 0000000 Event Subtraction

Generative Adversarial Networks

GAN: two competing networks \rightarrow generator and discriminator



GANs used in many applications like video and image generation and physics.

Event Generation

Unfolding 0000000 0000000 Event Subtraction

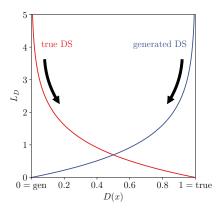
A real life example

When Discriminator sends it back saying it ain't Zebra:

Unfolding 0000000 0000000 Event Subtraction

Training the Discriminator

Discriminator loss



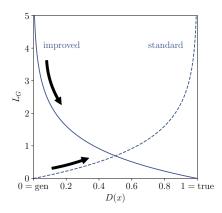
 $\begin{array}{lll} \text{Minimize} & L_D = \big\langle -\log D(x) \big\rangle_{x \sim P_T} + \big\langle -\log(1-D(x)) \big\rangle_{x \sim P_G} \end{array}$

Event Generation

Unfolding 0000000 0000000 Event Subtraction

Training the Generator

Generator loss

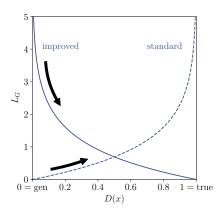


$$\mathsf{Maximize} \quad L_{\mathcal{G}} = ig\langle -\log(1-D(x))ig
angle_{x\sim P_{\mathcal{G}}}$$

 Unfolding 0000000 0000000 Event Subtraction

Training the Generator

Generator loss



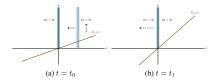
Minimize $L_G = \langle -\log D(x) \rangle_{x \sim P_G}$

 Introduction
 Event Generation
 Unfolding
 Event Subtraction
 Outlook

 00
 000000000●
 0000000
 00000000
 0

 00
 00000000●
 0000000
 00000000
 0

Regularization



[1801.04406]

Adding gradient penalty

$$\phi(x) = \log \frac{D(x)}{1 - D(x)} \qquad \Rightarrow \qquad \frac{\partial \phi}{\partial x} = \frac{1}{D(x)} \frac{1}{1 - D(x)} \frac{\partial D}{\partial x} \qquad (1)$$

$$L_D \to L_D + \lambda_D \langle (1 - D(x))^2 | \nabla \phi |^2 \rangle_{x \sim P_T} + \lambda_D \langle D(x)^2 | \nabla \phi |^2 \rangle_{x \sim P_G} , \quad (2)$$

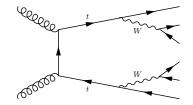
Event Generation

Unfolding 0000000 0000000 Event Subtraction

Top-Pair Production

GAN events for the $2\to 6~$ particle production process

$$pp
ightarrow t ar{t}
ightarrow (bW^-) \, (ar{b}W^+)
ightarrow (bq_1ar{q}_1') \, (ar{b}q_2ar{q}_2') \; .$$



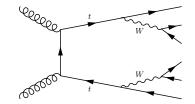
Event Generation

Unfolding 0000000 0000000 Event Subtraction

Top-Pair Production

GAN events for the $2\to 6~$ particle production process

$$pp
ightarrow t ar{t}
ightarrow (bW^-) \, (ar{b}W^+)
ightarrow (bq_1ar{q}_1') \, (ar{b}q_2ar{q}_2') \; .$$



Challenges: 16-dimensional phase-space, 4 resonances, phase-space boundaries, tails

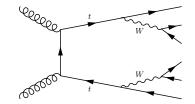
Event Generation

Unfolding 0000000 0000000 Event Subtraction

Top-Pair Production

GAN events for the $2\to 6~$ particle production process

$$pp
ightarrow t ar{t}
ightarrow (bW^-) \, (ar{b}W^+)
ightarrow (bq_1ar{q}_1') \, (ar{b}q_2ar{q}_2') \; .$$



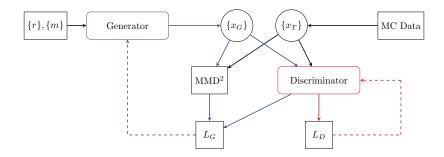
Challenges: 16-dimensional phase-space, 4 resonances, phase-space boundaries, tails

Event Generation

Unfolding 0000000 0000000 Event Subtraction

Outlool O

GAN Workflow

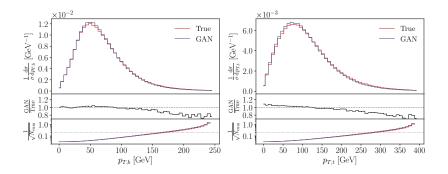


Event Generation

Unfolding 0000000 0000000 Event Subtraction

Outlool

Momentum Distributions

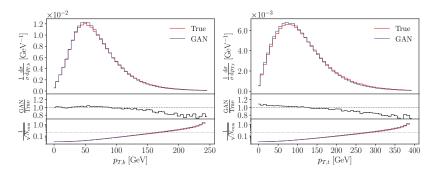


Event Generation

Unfolding 0000000 0000000 Event Subtraction

Outlool

Momentum Distributions



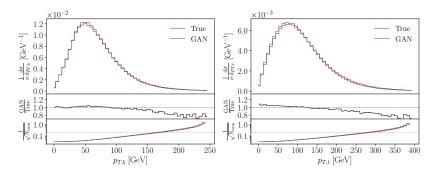
 \rightarrow flat distributions easy to learn!

Event Generation

Unfolding 0000000 0000000 Event Subtraction

Outlook

Momentum Distributions



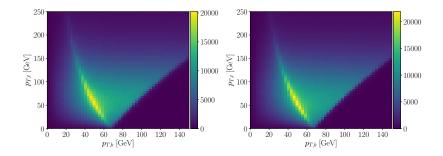
 \rightarrow flat distributions easy to learn!

 \rightarrow Deviations scale with statistic uncertainty in the tail

Event Generation

Unfolding 0000000 0000000 Event Subtraction

2-dimensional Correlations

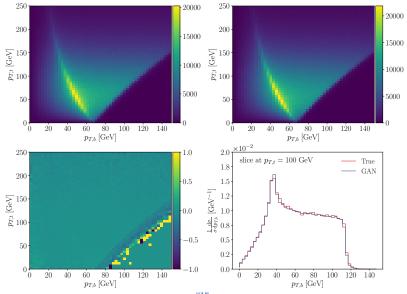


Event Generation

Unfolding 0000000 0000000 Event Subtraction

Outlook

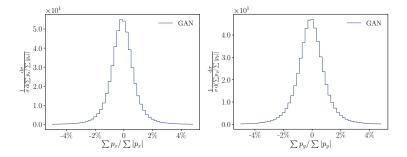
2-dimensional Correlations



Anja Butter

Unfolding 0000000 0000000 Event Subtraction

Momentum Conservation by the Network



The generator learns to conserve momentum at a 1% level.

Unfolding 0000000 0000000 Event Subtraction

Invariant Mass Peaks

What about the resonances?

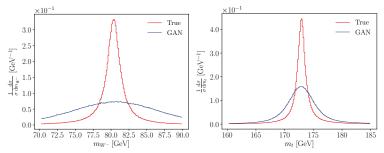
Event Generation

Unfolding 0000000 0000000 Event Subtraction

Outlook

Invariant Mass Peaks

Without the additional loss:



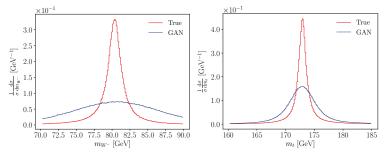
Event Generation

Unfolding 0000000 0000000 Event Subtraction

Outlook

Invariant Mass Peaks

Without the additional loss:



Challenge: resolve the mass peaks

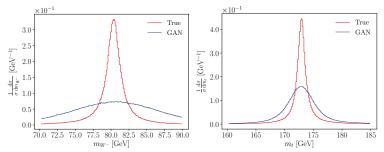
Event Generation

Unfolding 0000000 0000000 Event Subtraction

Outlook

Invariant Mass Peaks

Without the additional loss:



Challenge: resolve the mass peaks

Standard solution: phase-space remapping

$$\int \mathsf{d} s \frac{F(s)}{(s-m^2)^2+m^2\Gamma^2} = \frac{1}{m\Gamma} \int \mathsf{d} z \ F(s) \quad \text{with} \quad z = \arctan \frac{s-m^2}{m\Gamma}$$

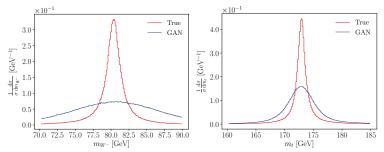
Event Generation

Unfolding 0000000 0000000 Event Subtraction

Outlook

Invariant Mass Peaks

Without the additional loss:



Challenge: resolve the mass peaks

Standard solution: phase-space remapping

$$\int ds \frac{F(s)}{(s-m^2)^2 + m^2 \Gamma^2} = \frac{1}{m\Gamma} \int dz \ F(s) \quad \text{with} \quad z = \arctan \frac{s-m^2}{m\Gamma}$$

However: knowledge of *m* and Γ needed

Anja Butter

Event Generation

Unfolding 0000000 0000000 Event Subtraction

Invariant Mass Peaks

Can we learn it simply from data?

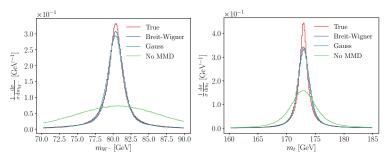
Event Generation

Unfolding 0000000 0000000 Event Subtraction

Outlook

Invariant Mass Peaks

Including the MMD Loss



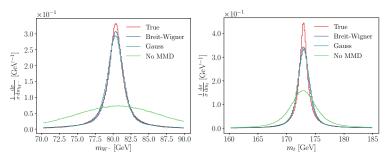
Event Generation

Unfolding 0000000 0000000 Event Subtraction

Outlook

Invariant Mass Peaks

Including the MMD Loss



 $\mathsf{MMD}^{2}(P_{\mathcal{T}}, P_{\mathcal{G}}) = \left\langle k(x, x') \right\rangle_{x, x' \sim P_{\mathcal{T}}} + \left\langle k(y, y') \right\rangle_{y, y' \sim P_{\mathcal{G}}} - 2\left\langle k(x, y) \right\rangle_{x \sim P_{\mathcal{T}}, y \sim P_{\mathcal{G}}}$

- free kernel choice \rightarrow stable results
- **no** knowledge of *m* and Γ needed

Event Generation

Unfolding 0000000 0000000 Event Subtraction

Outlook O

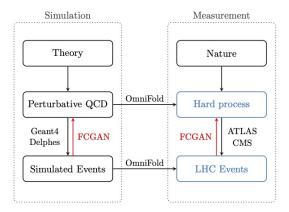
First conclusion

- The GAN is able to reproduce the full phase space structure of a realistic LHC process
- Flat distributions can be reproduced at arbitrary precison, limited only by statistics
- Using the MMD loss, we can even describe rich peaking resonances properly
- The same setup will allow us to generate events from an actual LHC event sample
- The GAN does not require any event unweighting

vent Generation

Unfolding •000000 000000 Event Subtraction

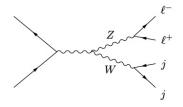
Unfolding detector effects



 Event Subtraction

Setup

$$pp \rightarrow ZW^{\pm} \rightarrow (\ell^{-}\ell^{+}) (jj)$$
 (3)



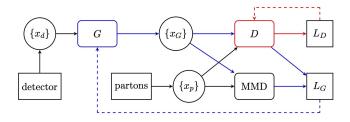
- 300k events using MadGraph+Pythia and Delphes, no ISR
- event selection:
 - exactly 2 jets and a pair of same-flavor opposite-sign leptons.
 - $p_{T,j} > 25 \text{ GeV } \& |\eta_j| < 2.5 \text{ GeV}.$
- Assign jet to a corresponding parton level object based on ΔR
- Assign leptons based on their charge

Event Generation 00000000000 00000000 Unfolding

Event Subtraction

Outlook

GAN setup



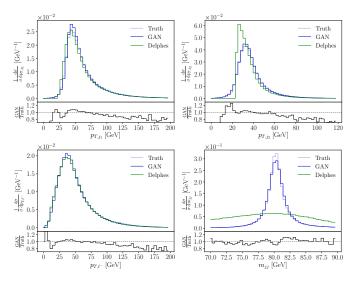
• Use GAN to map detector level events to parton level events

Event Generation 000000000000 00000000 Unfolding

Event Subtraction

Outlook

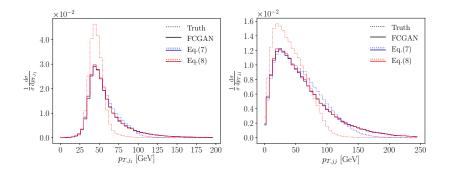
Unfolding the full distribution



Slicing

Eq.(7):
$$p_{T,j_1} = 30 \dots 100 \text{ GeV}$$

Eq.(8): $p_{T,j_1} = 30 \dots 60 \text{ GeV}$ and $p_{T,j_2} = 30 \dots 50 \text{ GeV}$

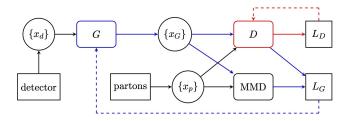


Event Generation 00000000000 00000000 Unfolding

Event Subtraction

Outlool

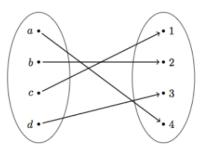
GAN setup



Event Generation 00000000000 00000000 Unfolding

Event Subtraction

Problems

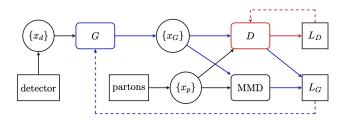


- No use of detector level information
- No concept of locality
- No stochastic mapping
- $\rightarrow\,$ Conditional GAN

Event Generation 000000000000 00000000 Unfolding

Event Subtraction

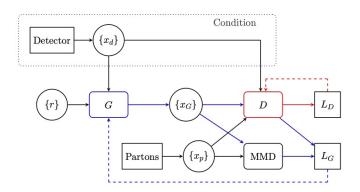
Conditional GAN I



Event Generation 000000000000 00000000 Unfolding 0000000 Event Subtraction

Outlook O

Conditional GAN I



Event Generation 000000000000 00000000 Unfolding 000000 0000000 Event Subtraction

Dutlook D

Conditional GAN II

Adjust loss function

$$L_{D} = \langle -\log D(x)
angle_{x \sim P_{p}} + \langle -\log (1 - D(x))
angle_{x \sim P_{G}}$$

 $L_{G} = \langle -\log D(x) \rangle_{x \sim P_{G}}$

Event Generation 000000000000 00000000 Unfolding 0000000 0000000 Event Subtraction

Outlool

Conditional GAN II

Adjust loss function

$$\begin{split} L_{D} &= \langle -\log D\left(x\right) \rangle_{x \sim P_{p}} + \langle -\log\left(1 - D\left(x\right)\right) \rangle_{x \sim P_{G}} \\ &\to L_{D}^{(\mathsf{FC})} = \langle -\log D\left(x,y\right) \rangle_{x \sim P_{T},y \sim P_{d}} + \langle -\log\left(1 - D\left(x,y\right)\right) \rangle_{x \sim P_{G},y \sim P_{d}} \end{split}$$

 $L_{G} = \langle -\log D(x) \rangle_{x \sim P_{G}}$

Event Generation 000000000000 00000000 Unfolding 0000000 0000000 Event Subtraction

Outlool

Conditional GAN II

Adjust loss function

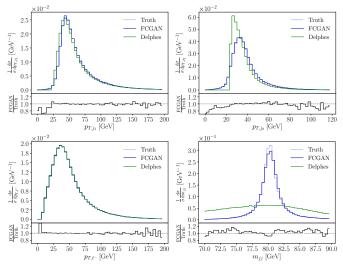
$$\begin{split} L_{D} &= \langle -\log D\left(x\right) \rangle_{x \sim P_{p}} + \langle -\log\left(1 - D\left(x\right)\right) \rangle_{x \sim P_{G}} \\ &\to L_{D}^{(\mathsf{FC})} = \langle -\log D\left(x,y\right) \rangle_{x \sim P_{T},y \sim P_{d}} + \langle -\log\left(1 - D\left(x,y\right)\right) \rangle_{x \sim P_{G},y \sim P_{d}} \end{split}$$

$$\begin{split} L_{G} &= \langle -\log D\left(x\right) \rangle_{x \sim P_{G}} \\ &\to L_{G}^{(\mathsf{FC})} = \langle -\log D\left(x,y\right) \rangle_{x \sim P_{G}, y \sim P_{d}} \end{split}$$

Event Generation 00000000000 00000000 Unfolding

Event Subtraction

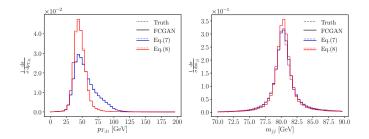
Full distributions



 $\rightarrow\,$ Nice by-product: No systematic effect in the tails!

Slicing

Eq.(7): $p_{T,j_1} = 30 \dots 100 \text{ GeV}$ (~ 88%) Eq.(8): $p_{T,j_1} = 30 \dots 60 \text{ GeV}$ and $p_{T,j_2} = 30 \dots 50 \text{ GeV}$ (~ 38%)



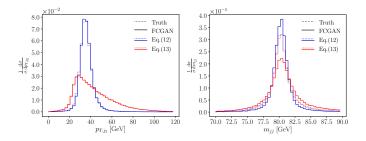
 \rightarrow

Event Generation 000000000000 00000000 Unfolding

Event Subtraction

Slicing until it breaks

 $\begin{array}{rll} {\sf Eq.(12):} & p_{T,j_1}=30 \ \dots \ 50 \ {\sf GeV} & p_{T,j_2}=30 \ \dots \ 40 \ {\sf GeV} \\ & p_{T,\ell^-}=20 \ \dots \ 50 \ {\sf GeV} & (\sim 14\%) \\ {\sf Eq.(13):} & p_{T,j_1}>60 \ {\sf GeV} & (\sim 39\%) \end{array}$



 $\rightarrow\,$ Requires additional conditioning on the mass

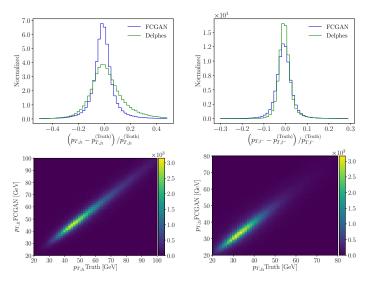
vent Generation

Unfolding

Event Subtraction

Outlool

Consistency check - pull & migration matrix



Event Generation 000000000000 00000000 Unfolding

Event Subtraction

Outlool O

Conclusion Unfolding

- Normal GAN can map full detector level distribution to full parton level distribution
- However: No meaningful event by event matching
- $\rightarrow\,$ FCGAN introduces stochastic behaviour and notion of locality
- + More stable predictions for tails
- + Meaningful slicing
- Only breaks for non conditional invariant mass
- What's next?

Event Generation 00000000000 00000000 Unfolding 0000000 0000000 Event Subtraction

Outlook

Physics case

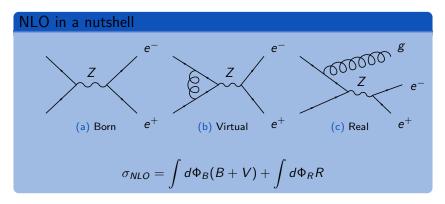
- Theory uncertainties have become a limiting factor for LHC analyses
- $\rightarrow\,$ Need for better accuracy

Event Generation 00000000000 00000000 Unfolding 0000000 0000000 Event Subtraction

Outlook O

Physics case

- Theory uncertainties have become a limiting factor for LHC analyses
- $\rightarrow\,$ Need for better accuracy



Unfolding 0000000 0000000 Event Subtraction

Outlook

Subtracting divergencies

- Virtual and real corrections diverge individually (eg. IR divergence)
- Sum of divergent contributions is finite
- \rightarrow Introduce dipoles D_i to cancel divergencies

Dipole subtraction

$$\sigma_{NLO} = \int d\Phi_B (B + V + \sum_i d\Phi_{R|B} D_i) + \int d\Phi_R (R - \sum_i D_i)$$

vent Generation

Unfolding 0000000 0000000 Event Subtraction

Outlook

Subtracting divergencies

- Virtual and real corrections diverge individually (eg. IR divergence)
- Sum of divergent contributions is finite
- \rightarrow Introduce dipoles D_i to cancel divergencies

Dipole subtraction

$$\sigma_{NLO} = \int d\Phi_B(B + V + \sum_i d\Phi_{R|B}D_i) + \int d\Phi_R(R - \sum_i D_i)$$

- Analytic solution only possible for simple processes
- Numeric subtraction of samples:
 - \rightarrow large statistic uncertainties
 - \rightarrow limits efficiency
- Other use cases: eg. on-shell subtractions, multi-jet merging

Unfolding 0000000 0000000

Sample based subtraction of distributions

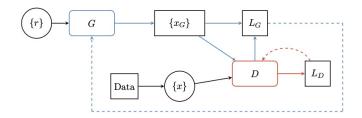
- Use GAN to subtract distribution P_S (subtract) from P_B (base)
- Distributions represented by samples
- GAN output: samples following P_{B-S}
- Idea:
 - One discriminator per sample distribution
 - Generate label vector c to identify subtraction events
 - $0 \leq c_i \leq 1$, $\sum_i c_i = 1 \rightarrow \text{softmax}$

		C_{B-S}	C_{S}	
$c = \begin{pmatrix} C_S \\ C_{B-S} \end{pmatrix}$	Data B Data S	1 0	1 1	
	B-S	1	0	

Event Generation

Unfolding 0000000 0000000 Event Subtraction

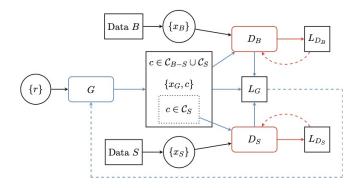
From a standard GAN ...



Unfolding 0000000 0000000 Event Subtraction

Outlook

... to a subtraction GAN



Event Generation

Unfolding 0000000 0000000 Event Subtraction

Outlook O

Building the loss function

• Standard GAN loss for each discriminator

Event Generation

Unfolding 0000000 0000000 Event Subtraction

Building the loss function

- Standard GAN loss for each discriminator
- Differentiable function to count events of one type

$$f(c)=e^{-lpha(\max(c)^2-1)^{2eta}}\in [0,1] \qquad ext{for} \qquad 0\leq c_i\leq 1 \; .$$

Event Generation

Unfolding 0000000 0000000 Event Subtraction

Building the loss function

- Standard GAN loss for each discriminator
- Differentiable function to count events of one type

$$f(c)=e^{-lpha(\max(c)^2-1)^{2eta}}\in [0,1] \qquad ext{for}\qquad 0\leq c_i\leq 1 \;.$$

Reward clear class assignment

$$L_{G}^{(\text{class})} = \left(1 - \frac{1}{b}\sum_{c \in batch} f(c)\right)^{2}$$

Event Generation

Unfolding 0000000 0000000 Event Subtraction

Building the loss function

- Standard GAN loss for each discriminator
- Differentiable function to count events of one type

$$f(c) = e^{-lpha(\max(c)^2 - 1)^{2eta}} \in [0, 1] \qquad ext{for} \qquad 0 \le c_i \le 1 \; .$$

Reward clear class assignment

$$L_{G}^{(\text{class})} = \left(1 - rac{1}{b}\sum_{c \in \textit{batch}} f(c)
ight)^{2}$$

• Fix normalization

$$L_{G_i}^{(\text{norm})} = \left(\frac{\sum_{c \in C_i} f(c)}{\sum_{c \in C_B} f(c)} - \frac{\sigma_i}{\sigma_0}\right)^2$$

Intro	du	ctio	on
00			

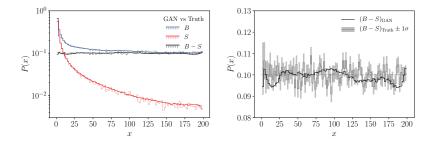
Event Generation 000000000000 000000000 Unfolding 0000000 0000000 Event Subtraction

Outlool

Toy example

• Toy example:

$$P_B(x) = \frac{1}{x} + 0.1$$
$$P_S(x) = \frac{1}{x}$$
$$P_{B-S}(x) = 0.1$$



Event Generation

Unfolding 0000000 0000000 Event Subtraction

Generalizing the setup

Include addition

	C_{B-S}	\mathcal{C}_{S}	$\mathcal{C}_{\mathcal{A}}$
Data B	1	1	0
Data S	0	1	0
Data A	0	0	1
B-S+A	1	0	1

• Use case:

One distribution is represented by significantly smaller dataset

Event Generation 00000000000 00000000 Unfolding 0000000 0000000 Event Subtraction

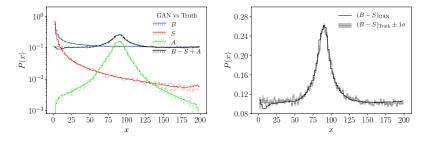
Outlool

Include addition

$$P_B(x) = \frac{1}{x} + 0.1$$

$$P_S(x) = \frac{1}{x}$$

$$P_A(x) = \frac{5}{\pi} \frac{10}{10^2 + (x - 90)^2}$$



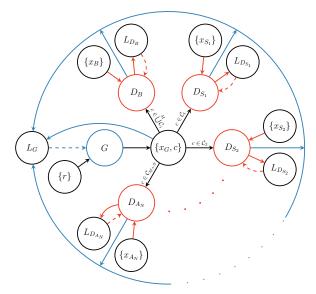
 Event Generation

 0000000000
 0000000

Unfolding 0000000 0000000 Event Subtraction

Outlook

Allowing for more datasets

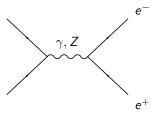


Event Generation

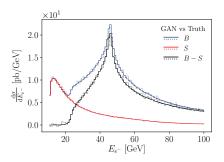
Unfolding 0000000 0000000 Event Subtraction

Outlook O

Subtracting LHC events



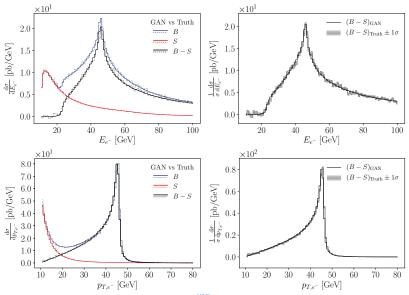
- P_B : $pp
 ightarrow e^+e^-$
- $P_S: pp \rightarrow \gamma \rightarrow e^+e^-$
- *p_T* > 10 GeV
- on-shell final state:
 6 dimensional output



Event Generation 000000000000 00000000 Unfolding 0000000 0000000 Event Subtraction

Outlook

Subtracting LHC events



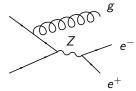
Anja Butter

Event Generation

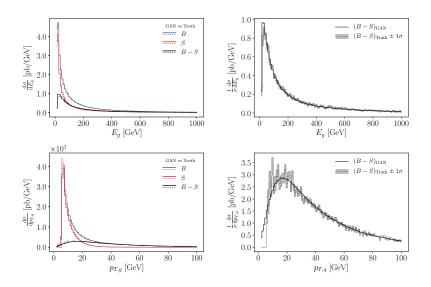
Unfolding 0000000 0000000 Event Subtraction

Outlool

Back to the original problem



- Subtract the Catany Seymour Dipole from the real emission term
- For proof of concept we use a slightly modifed Catany Seymour kernel \rightarrow increase difference
- Training
 - 10⁵ samples per distribution
 - 4-vector representation of Z and g
 - *E*_g > 5 GeV

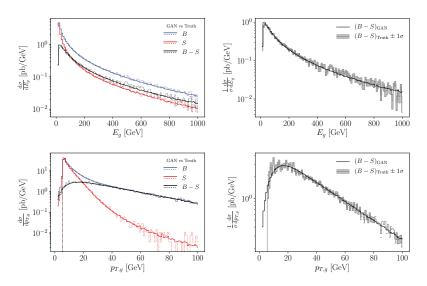


 Introduction
 Event Generation
 Unfolding
 Event Subtraction

 00
 0000000000
 00000000
 00000000

 000000000
 0000000
 0000000
 0000000

Results II



Vent Generation

Unfolding 0000000 0000000 Event Subtraction

Outlook

Conclusion

- HL-LHC results limited by uncertainty on theory prediction
- Need to improve efficiency of computing the subtracted real-emission corrections
- GAN for sample based subtraction → successful proof of concept!
- · Work with Monte Carlo community to test efficiency

 New tool for our ML toolbox → other use cases?

Event Generation 00000000000 00000000 Unfolding 0000000 0000000 Event Subtraction

Summary

- Classification problem solved \rightarrow use ML for new problems
- GANs can learn underlying distributions from event samples
- MMD improves performance for special features
- Generative networks can be used to directly unfold detector level distributions
- Employ FCGAN for notion of locality to enable meaningful slicing
- Successful sample based subtraction implemented
- Test performance for real application

Outlook

Hyperparameters - Toy1

Parameter	Value
training size	10 ⁵
layers	5
units	128
batch size	1024
learning rate	$3\cdot 10^{-4}$
decay generator	$5\cdot 10^{-3}$
decay discriminator	$2 \cdot 10^{-2}$
epochs	4000
discriminator updates	20
α	10
gradient penalty λ_{D_i}	$5 \cdot 10^{-5}$

Hyperparameters - Toy2

Parameter	Value
training size	10 ⁵
layers	7
units	128
batch size	1024
learning rate	$8\cdot 10^{-4}$
decay generator	$2 \cdot 10^{-2}$
decay discriminator	$2 \cdot 10^{-2}$
epochs	1000
iterations	4
discriminator updates	20
α	5
gradient penalty λ_{D_i}	$5\cdot 10^{-5}$

Hyperparameters - Resonance

Parameter	Value
training size	10 ⁵
layers	8
G units	160
D units	80
batch size	1024
learning rate	10^{-3}
decay generator	10^{-2}
decay discriminator	10^{-2}
epochs	1000
iterations	5
discriminator updates	2
α	5
gradient penalty λ_{D_i}	10^{-5}

Hyperparameters - Dipole

Parameter	Value
training size	10 ⁵
layers	8
G units	512
D units	256
batch size	1024
learning rate	0.001
decay generator	0.01
decay discriminator	0.01
epochs	20000
iterations	5
discriminator updates	2
α	5
gradient penalty λ_{D_i}	0.001