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Going beyond simple classification

• Classification is a solved problem

• Building a full toolbox
• Classification for density estimation
• Tracking challenge
• Decorrelating variables
• Anomaly detection
• Estimating uncertainties
• Generative models for event generation and

Detector simulation
• ...
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Phase-Space Sampling

Monte Carlo simulations at the heart of any LHC analysis

Problem: High-dimensionality and rich phase-space structures

Task: Finding an optimal phase-space mapping

→ Computationally time consuming

How to generate events more efficiently?
→ Neural networks!
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Neural Networks for Event Generation?

• Input: random numbers

• Output: unweighted events

• Training data:
• unweighted MC events or real data
• can include parton showers, hadronization and detector effects

Network architecture? → generative neural network
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Generative networks

GANs

VAEs
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• Large community working on GANs
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Explosive growth — All the named GAN variants cumulatively since 2014. Credit: Bruno Gavranović

→ Check out the GAN zoo!
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• A lot of experience as a community!
• Jet Images - de Oliveira et al. [1701.05927], Carazza et al. [1909.01359],

• Particle shower in Calorimeters - Paganini et al. [CaloGAN, 1705.02355, 1712.10321],

Musella et al. [1805.00850], Erdmann et al. [1807.01954],

ATLAS [ATL-SOFT-PUB-2018-001, ATL-SOFT-PROC-2019-007]

• Event generation - Otten et al. [1901.00875], Hashemi et al. [1901.05282],

Di Sipio et al. [1903.02433], Butter et al. [1907.03764], Martinez et al. [1912.02748], Alanazi et al. [2001.11103]

• Unfolding - Datta et al. [1806.00433], Bellagente et al. [1912.0047]

• Templates for QCD factorization - Lin et al. [1903.02556]

• EFT models - Erbin et al. [1809.02612]

• Event subtraction - Butter et al. [1912.08824]

• . . .
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Generative Adversarial Networks

GAN: two competing networks → generator and discriminator

GANs used in many applications like video and image generation and
physics.
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A real life example
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Training the Discriminator
Discriminator loss

0 = gen 0.2 0.4 0.6 0.8 1 = true
D(x)

0
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L
D

true DS generated DS

Minimize LD =
〈
− logD(x)

〉
x∼PT

+
〈
− log(1− D(x))

〉
x∼PG
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Regularization
Which Training Methods for GANs do actually Converge?

pD = �0 p✓ = �✓

D (x)

x

y

(a) t = t0

pD = �0 p✓ = �✓

D (x)

x

y

(b) t = t1

Figure 1. Visualization of the counterexample showing that gra-
dient descent based GAN optimization is not always convergent:
(a) In the beginning, the discriminator pushes the generator towards
the true data distribution and the discriminator’s slope increases.
(b) When the generator reaches the target distribution, the slope of
the discriminator is largest, pushing the generator away from the
target distribution. This results in oscillatory training dynamics
that never converge.

than 1, the training algorithm will converge to (✓⇤, ⇤) with
linear rate O(|�max|k) where �max is the eigenvalue of
F 0(✓⇤, ⇤) with the biggest absolute value. If all eigenval-
ues of F 0(✓⇤, ⇤) are on the unit circle, the algorithm can
be convergent, divergent or neither, but if it is convergent
it will generally converge with a sublinear rate. A similar
result (Khalil, 1996; Nagarajan & Kolter, 2017) also holds
for the (idealized) continuous system

✓
✓̇(t)

 ̇(t)

◆
=

✓
�r L(✓, )
r✓L(✓, )

◆
(3)

which corresponds to training the GAN with infinitely small
learning rate: if all eigenvalues of the Jacobian v0(✓⇤, ⇤)
at a stationary point (✓⇤, ⇤) have negative real-part, the
continuous system converges locally to (✓⇤, ⇤) with lin-
ear convergence rate. On the other hand, if v0(✓⇤, ⇤) has
eigenvalues with positive real-part, the continuous system
is not locally convergent. If all eigenvalues have zero real-
part, it can be convergent, divergent or neither, but if it is
convergent, it will generally converge with a sublinear rate.

For simultaneous gradient descent linear convergence can
be achieved if and only if all eigenvalues of the Jacobian
of the gradient vector field v(✓, ) have negative real part
(Mescheder et al., 2017). This situation was also considered
by Nagarajan & Kolter (2017) who examined the asymptotic
case of step sizes h that go to 0 and proved local convergence
for absolutely continuous generator and data distributions
under certain regularity assumptions.

2.2. The Dirac-GAN

Simple experiments, simple theorems are the building
blocks that help us understand more complicated systems.

Ali Rahimi - Test of Time Award speech, NIPS 2017

In this section, we describe a simple yet prototypical coun-
terexample which shows that in the general case unregular-
ized GAN training is neither locally nor globally convergent.

Definition 2.1. The Dirac-GAN consists of a (univariate)
generator distribution p✓ = �✓ and a linear discriminator
D (x) =  · x. The true data distribution pD is given by a
Dirac-distribution concentrated at 0.

Note that for the Dirac-GAN, both the generator and the
discriminator have exactly one parameter. This situation
is visualized in Figure 1. In this setup, the GAN training
objective (1) is given by

L(✓, ) = f( ✓) + f(0) (4)

While using linear discriminators might appear restrictive,
the class of linear discriminators is in fact as powerful as
the class of all real-valued functions for this example: when
we use f(t) = � log(1 + exp(�t)) and we take the supre-
mum over  in (4), we obtain (up to scalar and additive
constants) the Jensen-Shannon divergence between p✓ and
pD. The same holds true for the Wasserstein-divergence,
when we use f(t) = t and put a Lipschitz constraint on the
discriminator (see Section 3.1).

We show that the training dynamics of GANs do not con-
verge in this simple setup.

Lemma 2.2. The unique equilibrium point of the training
objective in (4) is given by ✓ =  = 0. Moreover, the
Jacobian of the gradient vector field at the equilibrium point
has the two eigenvalues ±f 0(0) i which are both on the
imaginary axis.

We now take a closer look at the training dynamics produced
by various algorithms for training the Dirac-GAN. First, we
consider the (idealized) continuous system in (3): while
Lemma 2.2 shows that the continuous system is generally
not linearly convergent to the equilibrium point, it could
in principle converge with a sublinear convergence rate.
However, this is not the case as the next lemma shows:

Lemma 2.3. The integral curves of the gradient vector field
v(✓, ) do not converge to the Nash-equilibrium. More
specifically, every integral curve (✓(t), (t)) of the gradient
vector field v(✓, ) satisfies ✓(t)2 +  (t)2 = const for all
t 2 [0,1).

Note that our results do not contradict the results of Nagara-
jan & Kolter (2017) and Heusel et al. (2017): our example
violates Assumption IV in Nagarajan & Kolter (2017) that
the support of the generator distribution is equal to the sup-
port of the true data distribution near the equilibrium. It
also violates the assumption2 in Heusel et al. (2017) that
the optimal discriminator parameter vector is a continuous
function of the current generator parameters. In fact, unless

2This assumption is usually even violated by Wasserstein-
GANs, as the optimal discriminator parameter vector as a function
of the current generator parameters can have discontinuities near
the Nash-equilibrium. See Section 3.1 for details.

[1801.04406]

Adding gradient penalty

φ(x) = log
D(x)

1− D(x)
⇒ ∂φ

∂x
=

1

D(x)

1

1− D(x)

∂D

∂x
(1)

LD → LD + λD
〈

(1− D(x))2 |∇φ|2
〉
x∼PT

+ λD
〈
D(x)2 |∇φ|2

〉
x∼PG

, (2)
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Top-Pair Production
GAN events for the 2→ 6 particle production process

pp → tt̄ → (bW−) (b̄W+)→ (bq1q̄
′
1) (b̄q2q̄

′
2) .

t

t

W

W

Challenges: 16-dimensional phase-space, 4 resonances,

phase-space boundaries, tails

Remarks: fix masses of final state particles
→ generate 18 dim output

additional loss focusing on phase-space structures
→ MMD Loss
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GAN Workflow

Generator{r}, {m} {xG} {xT } MC Data

DiscriminatorMMD2

LG LD

Anja Butter KMI 16 / 53



Introduction Event Generation Unfolding Event Subtraction Outlook

Momentum Distributions
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→ Deviations scale with statistic uncertainty in the tail
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2-dimensional Correlations
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Momentum Conservation by the Network
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The generator learns to conserve momentum at a 1% level.
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Invariant Mass Peaks

What about the resonances?
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Invariant Mass Peaks
Without the additional loss:
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Challenge: resolve the mass peaks

Standard solution: phase-space remapping
∫

ds
F (s)

(s −m2)2 + m2Γ2
=

1

mΓ

∫
dz F (s) with z = arctan

s −m2

mΓ
.

However: knowledge of m and Γ needed
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Invariant Mass Peaks

Can we learn it simply from data?
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Invariant Mass Peaks
Including the MMD Loss
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• free kernel choice → stable results

• no knowledge of m and Γ needed
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Invariant Mass Peaks
Including the MMD Loss
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First conclusion

• The GAN is able to reproduce the full phase space structure of a
realistic LHC process

• Flat distributions can be reproduced at arbitrary precison, limited
only by statistics

• Using the MMD loss, we can even describe rich peaking resonances
properly

• The same setup will allow us to generate events from an actual LHC
event sample

• The GAN does not require any event unweighting
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Unfolding detector effects
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Setup

pp → ZW± → (`−`+) (jj) (3)

• 300k events using MadGraph+Pythia and Delphes, no ISR
• event selection:

• exactly 2 jets and a pair of same-flavor opposite-sign leptons.
• pT ,j > 25 GeV &|ηj | < 2.5 GeV.

• Assign jet to a corresponding parton level object based on ∆R

• Assign leptons based on their charge
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GAN setup

• Use GAN to map detector level events to parton level events
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Unfolding the full distribution
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Slicing

Eq.(7) : pT ,j1 = 30 ... 100 GeV

Eq.(8) : pT ,j1 = 30 ... 60 GeV and pT ,j2 = 30 ... 50 GeV
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GAN setup
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Problems

• No use of detector level information

• No concept of locality

• No stochastic mapping

→ Conditional GAN
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Conditional GAN I
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Conditional GAN I
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Conditional GAN II

Adjust loss function

LD = 〈− logD (x)〉x∼Pp
+ 〈− log (1− D (x))〉x∼PG

→ L
(FC)
D = 〈− logD (x , y)〉x∼PT ,y∼Pd

+ 〈− log (1− D (x , y))〉x∼PG ,y∼Pd

LG = 〈− logD (x)〉x∼PG

→ L
(FC)
G = 〈− logD (x , y)〉x∼PG ,y∼Pd
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Full distributions
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→ Nice by-product: No systematic effect in the tails!
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Slicing

Eq.(7) : pT ,j1 = 30 ... 100 GeV (∼ 88%)

Eq.(8) : pT ,j1 = 30 ... 60 GeV and pT ,j2 = 30 ... 50 GeV (∼ 38%)
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Slicing until it breaks

Eq.(12) : pT ,j1 = 30 ... 50 GeV pT ,j2 = 30 ... 40 GeV

pT ,`− = 20 ... 50 GeV (∼ 14%)

Eq.(13) : pT ,j1 > 60 GeV (∼ 39%)
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→ Requires additional conditioning on the mass

Anja Butter KMI 34 / 53



Introduction Event Generation Unfolding Event Subtraction Outlook

Consistency check - pull & migration matrix
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Conclusion Unfolding

• Normal GAN can map full detector level distribution to full parton
level distribution

- However: No meaningful event by event matching

→ FCGAN introduces stochastic behaviour and notion of locality

+ More stable predictions for tails

+ Meaningful slicing

• Only breaks for non conditional invariant mass

• What’s next?
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Physics case

• Theory uncertainties have become a limiting factor for LHC analyses

→ Need for better accuracy

NLO in a nutshell

Z

e+

e−

(a) Born

Z

e+

e−

(b) Virtual

Z

e+

e−

g

(c) Real

σNLO =

∫
dΦB(B + V ) +

∫
dΦRR
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Subtracting divergencies

• Virtual and real corrections diverge individually (eg. IR divergence)

• Sum of divergent contributions is finite

→ Introduce dipoles Di to cancel divergencies

Dipole subtraction

σNLO =

∫
dΦB(B + V +

∑

i

dΦR|BDi ) +

∫
dΦR(R −

∑

i

Di )

• Analytic solution only possible for simple processes

• Numeric subtraction of samples:

→ large statistic uncertainties
→ limits efficiency

• Other use cases: eg. on-shell subtractions, multi-jet merging
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Sample based subtraction of distributions

• Use GAN to subtract distribution PS (subtract) from PB (base)

• Distributions represented by samples

• GAN output: samples following PB−S
• Idea:

• One discriminator per sample distribution
• Generate label vector c to identify subtraction events
• 0 ≤ ci ≤ 1,

∑
i ci = 1→ softmax

c =

(
CS

CB−S

) CB−S CS
Data B 1 1
Data S 0 1

B-S 1 0
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From a standard GAN ...
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... to a subtraction GAN
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Building the loss function
• Standard GAN loss for each discriminator

• Differentiable function to count events of one type

f (c) = e−α(max(c)2−1)2β ∈ [0, 1] for 0 ≤ ci ≤ 1 .

• Reward clear class assignment

L
(class)
G =

(
1− 1

b

∑

c∈batch
f (c)

)2

• Fix normalization

L
(norm)
Gi

=

(∑
c∈Ci f (c)∑
c∈CB f (c)

− σi
σ0

)2
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Toy example
• Toy example:

PB(x) =
1

x
+ 0.1

PS(x) =
1

x
PB−S(x) = 0.1
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Generalizing the setup

• Include addition

CB−S CS CA
Data B 1 1 0
Data S 0 1 0
Data A 0 0 1

B-S+A 1 0 1

• Use case:
• One distribution is represented by significantly smaller dataset
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Include addition

PB(x) =
1

x
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Allowing for more datasets

SciPost Physics Submission

{xG, c}G
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LDB

c 2
MS

C
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}

LDS1

c
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C 1
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}

LDS2

c 2 C2

DAN

{xAN
}

LDAN

c
2

C M
+

N

Figure 4: Structure of our general subtraction and addition GAN. The input {r} describes
a batch of random numbers and {x} the true input data or generated batches. The label c
encodes the category of the generated events. Blue arrows indicate the generator training,
red arrows the discriminators training.

2.3 General setup

Finally, we note that our network setup is not limited to three classes. We can generalize it
to a base distribution, M subtraction datasets, and N added datasets. The corresponding
category assignment, generalized from Tab.1, is given in Tab. 2 and encoded in an enlarged

C0 C1 C2 · · · CM CM+1 · · · CM+N

Data B 1 1 1 · · · 1 0 · · · 0
Data S1 0 1 0 · · · 0 0 · · · 0
Data S2 0 0 1 0 0 · · · 0
...

...
...

. . .
...

...
Data SM 0 0 0 1 0 · · · 0
Data A1 0 0 0 · · · 0 1 0
...

...
...

...
. . .

...
. . .

Data AN 0 0 0 · · · 0 0 1

Combination 1 0 0 · · · 0 1 · · · 1

Table 2: Details for the category selection in the general case.

8
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Subtracting LHC events

γ,Z

e+

e−

• PB : pp → e+e−

• PS : pp → γ → e+e−

• pT > 10 GeV

• on-shell final state:
6 dimensional output
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Subtracting LHC events
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Back to the original problem

Z

e+

e−

g

• Subtract the Catany Seymour Dipole from the real emission term

• For proof of concept we use a slightly modifed Catany Seymour
kernel → increase difference

• Training
• 105 samples per distribution
• 4-vector representation of Z and g
• Eg > 5 GeV
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Results I
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Results II
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Conclusion

• HL-LHC results limited by uncertainty on theory prediction

• Need to improve efficiency of computing the subtracted
real-emission corrections

• GAN for sample based subtraction
→ successful proof of concept!

• Work with Monte Carlo community to test efficiency

• New tool for our ML toolbox
→ other use cases?
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Summary

• Classification problem solved → use ML for new problems

• GANs can learn underlying distributions from event samples

• MMD improves performance for special features

• Generative networks can be used to directly unfold detector level
distributions

• Employ FCGAN for notion of locality to enable meaningful slicing

• Successful sample based subtraction implemented

• Test performance for real application
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Hyperparameters - Toy1

Parameter Value

training size 105

layers 5
units 128
batch size 1024
learning rate 3 · 10−4

decay generator 5 · 10−3

decay discriminator 2 · 10−2

epochs 4000
discriminator updates 20
α 10
gradient penalty λDi 5 · 10−5
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Hyperparameters - Toy2

Parameter Value

training size 105

layers 7
units 128
batch size 1024
learning rate 8 · 10−4

decay generator 2 · 10−2

decay discriminator 2 · 10−2

epochs 1000
iterations 4
discriminator updates 20
α 5
gradient penalty λDi 5 · 10−5
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Hyperparameters - Resonance

Parameter Value

training size 105

layers 8
G units 160
D units 80
batch size 1024
learning rate 10−3

decay generator 10−2

decay discriminator 10−2

epochs 1000
iterations 5
discriminator updates 2
α 5
gradient penalty λDi 10−5
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Hyperparameters - Dipole

Parameter Value

training size 105

layers 8
G units 512
D units 256
batch size 1024
learning rate 0.001
decay generator 0.01
decay discriminator 0.01
epochs 20000
iterations 5
discriminator updates 2
α 5
gradient penalty λDi 0.001
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