Theoretical Outlook

Zoltan Ligeti

(ligeti@berkeley.edu)

Clear and well established motivations

 $\left. \begin{array}{l} \mbox{Hierarchy problem} \rightarrow \mbox{TeV scale?} \\ \mbox{Dark matter} \rightarrow \mbox{WIMP paradigm?} \end{array} \right\} \Leftrightarrow \mbox{ no clear BSM signals in FPCP data} \\ \end{array} \right.$

- Most TeV-scale new physics contain new sources of *CP* and flavor violation
- The observed baryon asymmetry of the Universe requires CPV beyond the SM (Not necessarily in flavor changing processes, nor necessarily in quark sector)
- Future: $\frac{(\text{LHCb upgrade})}{(\text{LHCb } 1 \, \text{fb}^{-1})} \sim \frac{(\text{Belle II data set})}{(\text{Belle data set})} \sim \frac{(2009 \text{ BaBar data set})}{(1999 \text{ CLEO data set})} \sim 50$ Hope: verify Kobayashi–Maskawa mechanism \rightarrow discover/study BSM

Increase in sensitivity to high scales $\sqrt[4]{50} \sim 2.5$, similar to LHC 7-8 \rightarrow LHC 13-14 (Minimal estimate, expect "unpredictable" progress, data has always motivated new ideas)

• EDM and CLFV sensitivity will also improve orders of magnitude — very important

Preliminaries

- Experimental outlook: **awesome!** [See: Marconi, Barrett]
- Theoretical outlook: Depends a bit on who you ask [Recall panel discussion w/ Browder]
 Data always motivates theory
 More progress than imagine it now (next breakthroughs?)
- Cannot cover all topics, focus on a few, mainly in the quark sector
- A large number of reviews & reports w/ large tables of key modes
 LHCb-PUB-2014-040, "Impact of the LHCb upgrade detector design choices on physics and
 trigger performance" https://cdsweb.cern.ch/record/1748643

 BELLE2-NOTE-0021, "Impact of Belle II on flavour physics"
 - https://belle2.cc.kek.jp/~twiki/pub/Public/B2TIP/belle2-note-0021.pdf
- Apologies for missing references ["act now, apologize later" ©Ben Grinstein]

New physics: dimension >4 operators

• Heavy BSM physics generates dimension > 4 operators ("nonrenormalizable")

$$\mathcal{L} = \mathrm{SM} + \sum_{i} \frac{C_{5i}}{\Lambda} \mathcal{O}_{5i} + \sum_{i} \frac{C_{6i}}{\Lambda^2} \mathcal{O}_{6i} + \dots$$

- Unique type of dimension-5 terms: $(L\phi)(L\phi)$ These were discovered, if m_{ν} term violates lepton number ("Majorana" $\Rightarrow 0\nu\beta\beta$)
- The presence of no dim-6 term has been established:

Precision electroweak:
$$\frac{(\phi D^{\mu} \phi)^2}{\Lambda^2} \Rightarrow \Lambda > \text{few} \times 10^3 \,\text{GeV}$$

Flavor and *CP* violation: $\frac{QQQQ}{\Lambda^2} \Rightarrow \Lambda \gtrsim 10^{(3...7)} \,\text{GeV}$
Baryon and lepton number violation: $\frac{QQQL}{\Lambda^2} \Rightarrow \Lambda \gtrsim 10^{16} \,\text{GeV}$

Search for (heavy) new physics = search for such new contributions

LHCb 50/fb summary

Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory
B_s^0 mixing	$\phi_s(B^0_s \to J/\psi \phi) \text{ (rad)}$	0.049	0.025	0.009	~ 0.003
	$\phi_s(B_s^0 \to J/\psi \ f_0(980)) \ (\text{rad})$	0.068	0.035	0.012	~ 0.01
	$A_{ m sl}(B_s^0)~(10^{-3})$	2.8	1.4	0.5	0.03
Gluonic	$\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$	0.15	0.10	0.018	0.02
penguin	$\phi_s^{\text{eff}}(B^0_s \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.023	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_{\text{S}}) \text{ (rad)}$	0.30	0.20	0.036	0.02
Right-handed	$\phi_s^{\text{eff}}(B_s^0 \to \phi \gamma) \text{ (rad)}$	0.20	0.13	0.025	< 0.01
currents	$ au^{\mathrm{eff}}(B^0_s \to \phi \gamma)/ au_{B^0_s}$	5%	3.2%	0.6%	0.2%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \mathrm{GeV^2/c^4})$	0.04	0.020	0.007	0.02
penguin	$q_0^2 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	10%	5%	1.9%	$\sim 7\%$
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV^2/c^4})$	0.09	0.05	0.017	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	14%	7%	2.4%	$\sim 10\%$
Higgs	$\mathcal{B}(B^0_s \to \mu^+ \mu^-) \ (10^{-9})$	1.0	0.5	0.19	0.3
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	220%	110%	40%	$\sim 5~\%$
Unitarity	$\gamma(B \to D^{(*)}K^{(*)})$	7°	4°	0.9°	negligible
triangle	$\gamma(B_s^0 \to D_s^{\mp} K^{\pm})$	17°	11°	2.0°	negligible
angles	$\beta(B^0 \to J/\psi K_{\rm S}^0)$	1.7°	0.8°	0.31°	negligible
Charm	$A_{\Gamma}(D^0 \to K^+ K^-) \ (10^{-4})$	3.4	2.2	0.4	_
CP violation	$\Delta A_{CP} \ (10^{-3})$	0.8	0.5	0.1	<u></u>

• Many measurements with direct BSM sensitivity improve by a factor 5 - 10

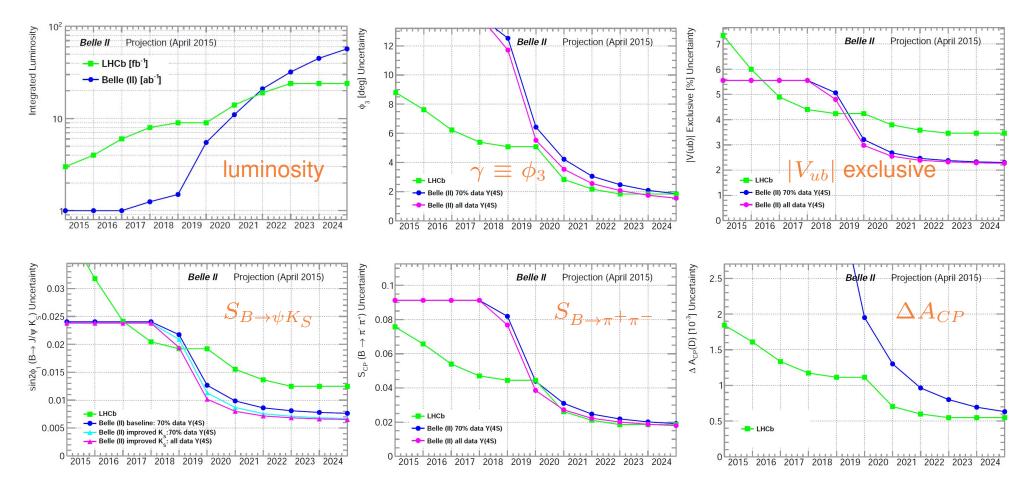
Belle II 50/ab summary

Observables	Belle	Bel	le II	\mathcal{L}_{s}
	(2014)	5 ab^{-1}	50 ab^{-1}	$[ab^{-1}]$
$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012$	± 0.012	± 0.008	6
α		$\pm 2^{\circ}$	$\pm 1^{\circ}$	
γ	$\pm 14^{\circ}$	$\pm 6^{\circ}$	$\pm 1.5^{\circ}$	
$S(B o \phi K^0)$	$0.90\substack{+0.09\\-0.19}$	± 0.053	± 0.018	>50
$S(B o \eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	± 0.028	± 0.011	>50
$S(B ightarrow K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$	± 0.100	± 0.033	44
$ V_{cb} $ incl.	$\pm 2.4\%$	$\pm 1.0\%$		< 1
$ V_{cb} $ excl.	$\pm 3.6\%$	$\pm 1.8\%$	$\pm 1.4\%$	< 1
$ V_{ub} $ incl.	$\pm 6.5\%$	$\pm 3.4\%$	$\pm 3.0\%$	2
$\left V_{ub}\right $ excl. (had. tag.)	$\pm 10.8\%$	$\pm 4.7\%$	$\pm 2.4\%$	20
$ V_{ub} $ excl. (untag.)	$\pm 9.4\%$	$\pm 4.2\%$	$\pm 2.2\%$	3
${\cal B}(B o au u)$ [10 ⁻⁶]	96 ± 26	$\pm 10\%$	$\pm 5\%$	46
${\cal B}(B o \mu u) \; [10^{-6}]$	< 1.7	5σ	$>> 5\sigma$	>50
R(B ightarrow D au u)	$\pm 16.5\%$	$\pm 5.6\%$	$\pm 3.4\%$	4
$R(B ightarrow D^* au u)$	$\pm 9.0\%$	$\pm 3.2\%$	$\pm 2.1\%$	3
$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40		$\pm 30\%$	>50
$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55		$\pm 30\%$	>50
${\cal B}(B o X_s \gamma) \; [10^{-6}]$	$\pm 13\%$	$\pm 7\%$	$\pm 6\%$	< 1
$A_{CP}(B o X_s \gamma)$		± 0.01	± 0.005	8
$S(B ightarrow K^0_S \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	± 0.11	± 0.035	> 50
$S(B o ho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	± 0.23	± 0.07	> 50
$C_7/C_9~(B o X_s\ell\ell)$	${\sim}20\%$	10%	5%	
$\mathcal{B}(B_s o \gamma \gamma) \; [10^{-6}]$	< 8.7	± 0.3		
$\mathcal{B}(B_s \to \tau^+ \tau^-) \ [10^{-3}]$		< 2		82

Observables	Belle	Bel	le II	\mathcal{L}_{s}
	(2014)	5 ab^{-1}	$50 { m ab}^{-1}$	$[ab^{-1}]$
${\cal B}(D_s o \mu u)$	$5.31 imes 10^{-3} (1 \pm 0.053 \pm 0.038)$	$\pm 2.9\%$	$\pm (0.9\%$ -1.3%)	> 50
${\cal B}(D_s o au u)$	$5.70 imes10^{-3}(1\pm0.037\pm0.054)$	$\pm (3.5\%$ -4.3%)	$\pm (2.3\%$ -3.6%)	3-5
$y_{CP} [10^{-2}]$	$1.11 \pm 0.22 \pm 0.11$	$\pm (0.11 \text{-} 0.13)$	$\pm(0.05\text{-}0.08)$	5-8
$A_{\Gamma} \ [10^{-2}]$	$-0.03 \pm 0.20 \pm 0.08$	± 0.10	$\pm(0.03\text{-}0.05)$	7 - 9
$A_{CP}^{K^+K^-}$ [10 ⁻²]	$-0.32 \pm 0.21 \pm 0.09$	± 0.11	± 0.06	15
$A_{CP}^{\pi^+\pi^-}$ [10 ⁻²]	$0.55 \pm 0.36 \pm 0.09$	± 0.17	± 0.06	> 50
$A_{CP}^{\phi\gamma} \ [10^{-2}]$	$\pm~5.6$	± 2.5	±0.8	> 50
$x^{K_S \pi^+ \pi^-} [10^{-2}]$	$0.56 \pm 0.19 \pm rac{0.07}{0.13}$	± 0.14	± 0.11	3
$y^{K_S \pi^+ \pi^-} [10^{-2}]$	$0.30 \pm 0.15 \pm {0.05 \atop 0.08}$	± 0.08	± 0.05	15
$ q/p ^{K_S\pi^+\pi^-}$	$0.90\pm {0.16\atop 0.15}\pm {0.08\atop 0.06}$	± 0.10	± 0.07	5-6
$\phi^{K_S \pi^+ \pi^-}$ [°]	$-6\pm11\pmrac{4}{5}$	± 6	± 4	10
$A_{CP}^{\pi^0\pi^0}$ [10 ⁻²]	$-0.03 \pm 0.64 \pm 0.10$	± 0.29	± 0.09	> 50
$A_{CP}^{K_S^0 \pi^0} \ [10^{-2}]$	$-0.10 \pm 0.16 \pm 0.09$	± 0.08	± 0.03	> 50
$Br(D^0 o \gamma \gamma) \; [10^{-6}]$	< 1.5	$\pm 30\%$	$\pm 25\%$	2
	$ au o \mu \gamma \left[10^{-9} ight]$	< 45	< 14.7	< 4.7
	$ au ightarrow e\gamma \; [10^{-9}]$	< 120	< 39	< 12
	$ au o \mu \mu \mu \; [10^{-9}]$	< 21.0	< 3.0	< 0.3

 $\mathcal{L}_s =$ luminosity so that $\sigma(stat) = \sigma(syst)$

Clear physics cases


Broad program, large improvements

I will not go through all...

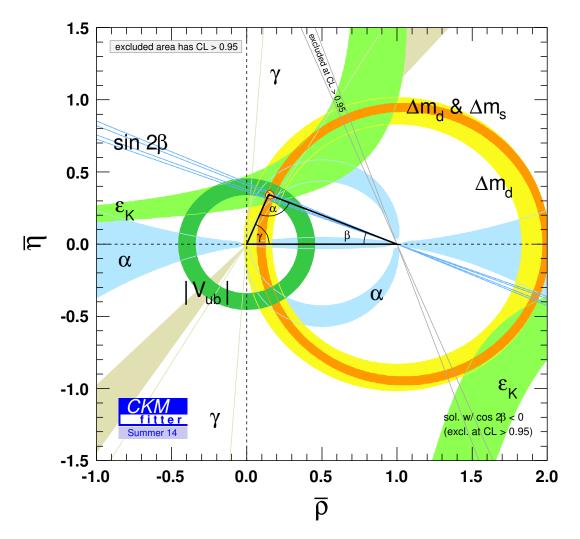
Belle II — LHCb: complementarity & competition

NB: these plots show statistical errors only, important issues swept under the rug

Details depend on Belle II and LHC LS2–3 schedules

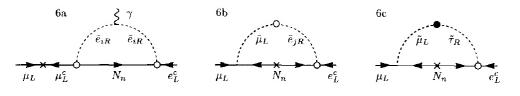
[Urquijo, private communications]

Spectacular track record

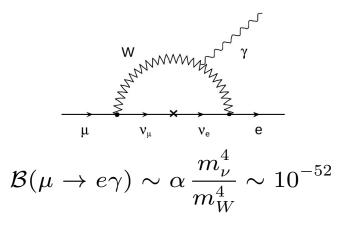

- Searching for new physics via virtual effects has been extremely successful
- Flavor physics was crucial to figure out \mathcal{L}_{SM} :
 - Absence of $K_L \rightarrow \mu \mu$ predicted charm (Glashow, Iliopoulos, Maiani)
 - ϵ_K predicted 3rd generation (Kobayashi & Maskawa)
 - Δm_K predicted m_c (Gaillard & Lee; Vainshtein & Khriplovich)
 - Δm_B predicted large m_t
- If NP couples to quarks and leptons, understanding new flavor parameters will be crucial (recent example: probe SM & BSM Higgs couplings)

The standard model CKM fit

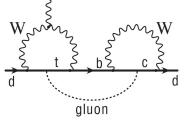
- The level of agreement between the measurements is often misinterpreted
- Larger allowed region if the SM is not assumed to hold, more fit parameters


• $\mathcal{O}(20\%)$ NP contributions to most loop-level processes (FCNC) are still allowed

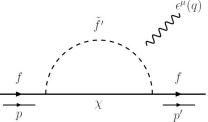
Charged lepton flavor violation


- SM predicted lepton flavor conservation with $m_{\nu} = 0$ Given $m_{\nu} \neq 0$, no reason to impose it as a symmetry
- If new TeV-scale particles carry lepton number (e.g., sleptons), then they have their own mixing matrices ⇒ charged lepton flavor violation [Passemar]

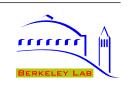
- Many interesting processes:
 - $\mu \to e\gamma, \ \mu \to eee, \ \mu + N \to e + N^{(\prime)}, \ \mu^+ e^- \to \mu^- e^+$ $\tau \to \mu\gamma, \ \tau \to e\gamma, \ \tau \to \mu\mu\mu, \ \tau \to eee, \ \tau \to \mu\mu e$ $\tau \to \mu ee, \ \tau \to \mu\pi, \ \tau \to e\pi, \ \tau \to \mu K_S, \ eN \to \tau N$



History of $\mu \to e\gamma$, $\mu N \to eN$, and $\mu \to 3e$



Electric dipole moments and SUSY


- SM + m_{ν} : CPV can occur in: (i) quark mixing; (ii) lepton mixing; and (iii) θ_{QCD} Only observed $\delta_{\text{KM}} \neq 0$, baryogenesis implies there must be more [Jung]
- Neutron EDM bound: "The strong *CP* problem", $\theta_{QCD} < 10^{-10}$ axion? θ_{QCD} is negligible for CPV in flavor-changing processes ξ^{γ}
- EDMs from CKM: vanish at one- and two-loop large suppression at three-loop level

- In SUSY, both quark and lepton EDMs can be generated at one-loop Generic prediction (TeV-scale, no small param's) above current bounds; if $m_{\rm SUSY} \sim O(10 \,{\rm TeV})$, may still discover EDMs
- Expected 10²–10³ improvements: complementary to LHC

The rest of this talk

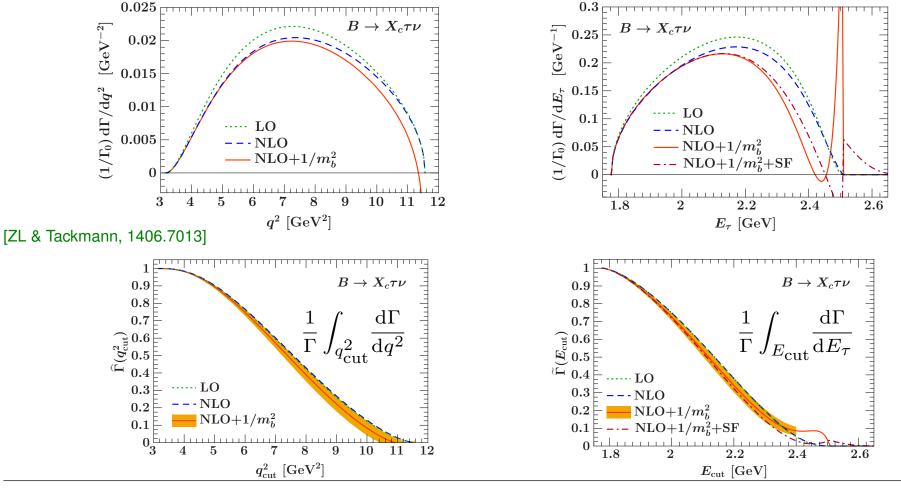
- Near future:
 - Current anomalies: most often talked about best chance to become decisive soon (unless fluctuations)
- Long term future: large improvements in new physics sensitivity "Expected" / "predictable": need lots of work and ingenuity still, may encounter surprises while pushing for large improvements
 One example: new physics in meson mixing
- Unexpected developments: Most exciting, but I cannot talk about them...

New results: $B ightarrow D^{(*)} au ar{ u}$ rates

• New Belle & LHCb results on the anomaly seen by BaBar in $R(X) = \frac{\Gamma(B \to X \tau \bar{\nu})}{\Gamma(B \to X \ell \bar{\nu})}$

	R(D)	$R(D^*)$	$\begin{array}{c} 0.5 \\ - BaBar \\ - Belle \end{array}$
BaBar	$0.440 \pm 0.058 \pm 0.042$	$0.332 \pm 0.024 \pm 0.018$	$0.45 \xrightarrow{\text{Belle}}_{\text{Average}} \chi_{\text{elimin}}^{\text{Belle}} \chi_{\chi^2}^2 = 1,4,9,16$
Belle	$0.375^{+0.064}_{-0.063} \pm 0.026$	$0.293^{+0.039}_{-0.037}\pm0.015$	0.4
LHCb		$0.336 \pm 0.027 \pm 0.030$	0.35
Average	0.388 ± 0.047	0.321 ± 0.021	0.3
SM expectation	0.300 ± 0.010	0.252 ± 0.005	0.25
Belle II, 50/ab	± 0.010	± 0.005	0.2^{1} 0.3^{1} 0.4 0.5 0.6
			[Thanks to M. Rotondo]

SM predictions fairly robust: heavy quark symmetry + lattice QCD (only D so far)


- An obvious cross-check: precise prediction in SM $R(X_c) = 0.223 \pm 0.004$ [Freytsis, ZL, Ruderman, to appear, VS. $\mathcal{B}(b \to X\tau^+\nu) = (2.41 \pm 0.23)\%$ (LEP / PDG) Leptoquarks, W', etc? MFV?] Neither BaBar nor Belle has measured $\mathcal{B}(B \to X\tau\bar{\nu})$
- Next steps: LHCb result with hadronic τ decays, measure R(D), maybe Λ_b decay

Aside: precision $B o X_c au ar{ u}$ predictions

• No measurements since LEP (work in progress?) (No theory work in ~ 15 yrs) Papers in '90s used pole mass, no predictions for spectra — interesting theory issues

 $|V_{ub}|$ from $\Lambda_b o p \mu ar{
u}$

90

70 E 60 E

50 E

30 20

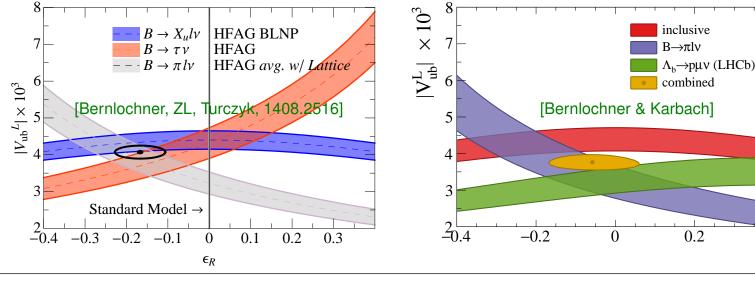
10

LHCb simulation

▼ both solutions

• one solution

 q^2 selection efficiency [%]


 $|V_{ub}|$ crucial for improving constraints on NP

 $|V_{ub}|_{\text{LHCb}} = (3.27 \pm 0.15 \pm 0.17 \pm 0.06) \times 10^{-3}$ $|V_{ub}|^2_{\text{LHCb}} \propto \mathcal{B}(\Lambda_c \to pK\pi)$ PDG: 25% \to Belle: 5% BES III result soon; did you look carefully at the posters?

• $\sim 3 \sigma$ tension among $|V_{ub}|$ measurements

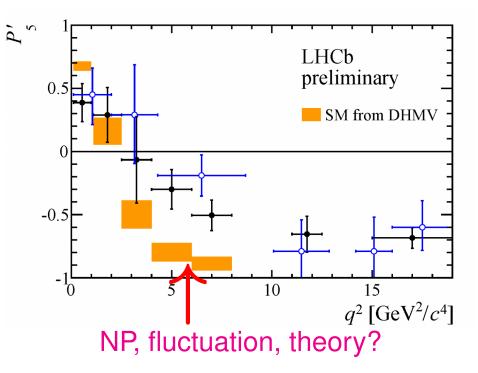
Too early to conclude, measurements and theory will improve

• A BSM option: right-handed current — less good fit now

0.4

 $\epsilon_{\rm R}$

0.2

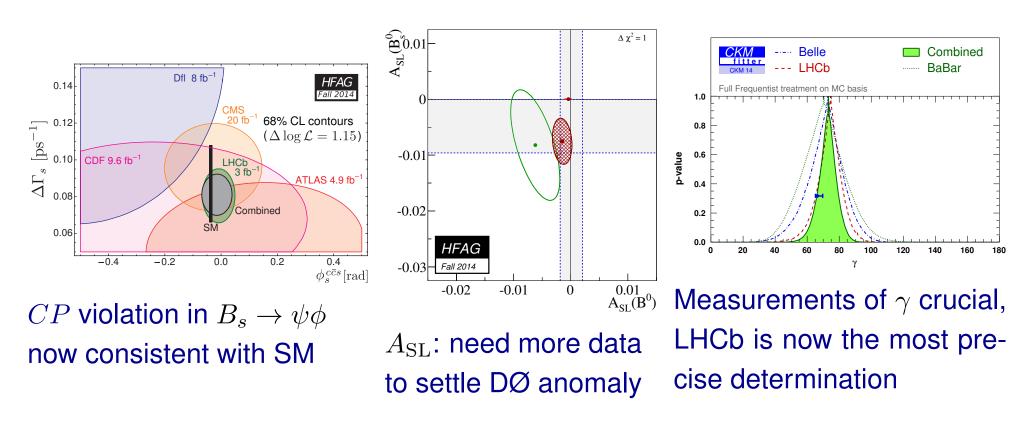

20

15

[LHCb, 1504.01568] q^2 [GeV²/ c^4]

$B ightarrow K^* \ell^+ \ell^-$: the P_5' anomaly

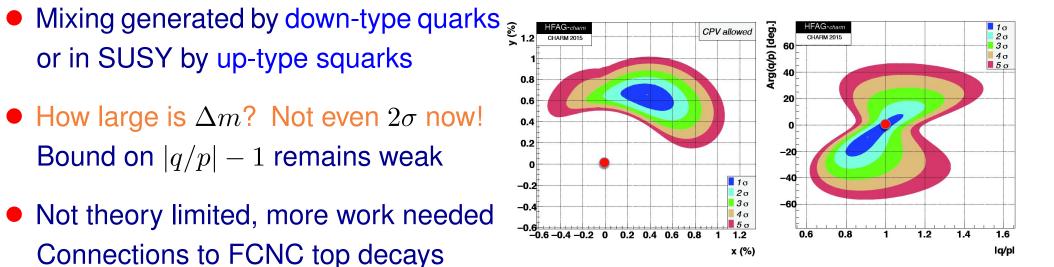
- "Optimized observables" [1202.4266]
 (some assumptions about what's optimal)
 - Difficult for lattice QCD, large recoil
 - Measuring all the other distributions remains important
 - Global fits: simplest solution may be that NP reduces C_9 [Altmannshofer, Bobeth, Martin Camalich]



- Cross checks: different regions of phase space, also study in B_s and Λ_b decays?
- Connected to many other processes: can one calculate form factors (ratios) reliably at small q^2 ? (semileptonic & nonleptonic decays, interpreting CP viol., etc.)

Other recent highlights

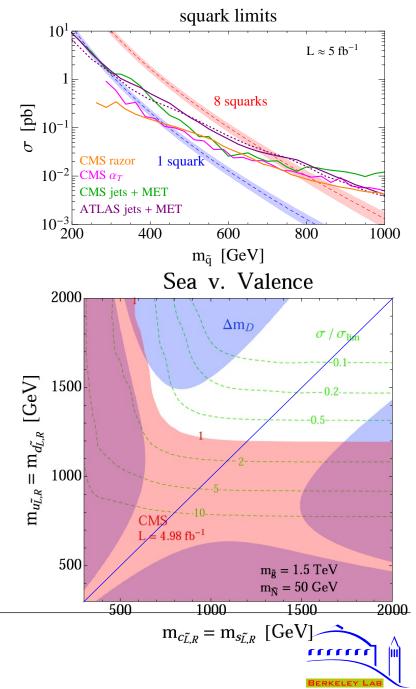
• Uncertainty of predictions \ll current experimental errors (\Rightarrow much more data)


• I have nothing new to say about $h \to \tau \mu$ and hint of violation of lepton universality in $B \to K \mu^+ \mu^-$ vs. $B \to K e^+ e^-$ — dramatic implications if clearly established

Charm *CP* **violation**

- *CP* violation in *D* decay LHCb, late 2011: $\Delta A_{CP} \equiv A_{K^+K^-} - A_{\pi^+\pi^-} = -(8.2 \pm 2.4) \times 10^{-3}$ Current WA: $\Delta A_{CP} = -(2.5 \pm 1.0) \times 10^{-3}$ (a stretch in the
 - $^{\swarrow}$ (a stretch in the SM, imho)
- I think we still don't know how big an effect could (not) be accommodated in SM

• SUSY: interplay of D & K bounds: alignment, universality, heavy squarks?


Hide flavor signals \Leftrightarrow hide high- p_T signals

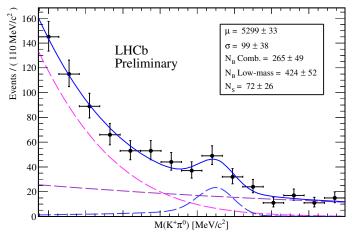
ZL – p. 18

 Squarks need not be as degenerate as often thought or assumed [Gedalia, Kamenik, ZL, Perez, 1202.5038]

Top plot: each LHC search becomes weaker [Mahbubani, Papucci, Perez, Ruderman, Weiler, 1212.3328] Bottom plot: unshaded region still allowed if 4– 4 squarks (but not all 8) are degenerate

- If 4 pairs of u, d, s, c squarks not degenerate, lot weaker LHC bounds: $1.2 \text{ TeV} \Rightarrow 600 \text{ GeV}$
- Ways for naturalness to survive: can give up many assumptions...

A surprise (for me): $B^+ o K^+ \pi^0$ at LHCb


Observed 3.7σ mass peak in decay w/ photons and no reconstructed decay vertex [LHCb-CONF-2015-001] http://cds.cern.ch/record/1988475

At LHCb, this study also serves as a prototype for analyses with similar topologies, such as $B^0 \to K^0 \pi^0$, $\Lambda_{_{\rm b}} \to \Lambda \gamma$, and $B^0 \to K^0 \pi^0 \gamma$

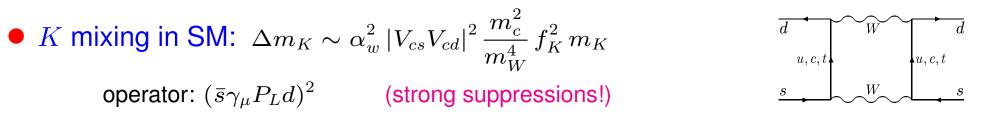
Important modes to study, yet very challenging at LHCb

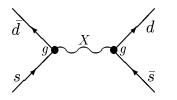
- No secondary vertex, photons in final state
- Analysis of $B^{\scriptscriptstyle +} \to K^{\scriptscriptstyle +} \pi^{\scriptscriptstyle 0}$ is a critical first step, and a proof-of-concept

Encouraged by the outcome of this analysis, a dedicated software trigger is being developed for use in Run II [Andrews, Moriond EW 2015]

• Large set of "new" processes for LHCb to explore

What are ultimate uncertainties? Increase in overlap between LHCb and Belle II




Far future: e.g., meson mixing

Importance known since the 70s, conservative picture of future progress

Δm_K — built into all NP models

• If exchange of a heavy particle X contributes $\mathcal{O}(1)$ to Δm_K

$$\frac{\Delta m_K^{(X)}}{\Delta m_K} \bigg| \sim \bigg| \frac{g^2 \Lambda_{\text{QCD}}^3}{M_X^2 \Delta m_K} \bigg| \implies M_X \gtrsim g \times 2 \cdot 10^3 \,\text{TeV}$$
(The bound from ϵ_K is even stronger)

TeV-scale particles with loop-suppressed coupling can still be visible $[g \sim O(10^{-3})]$

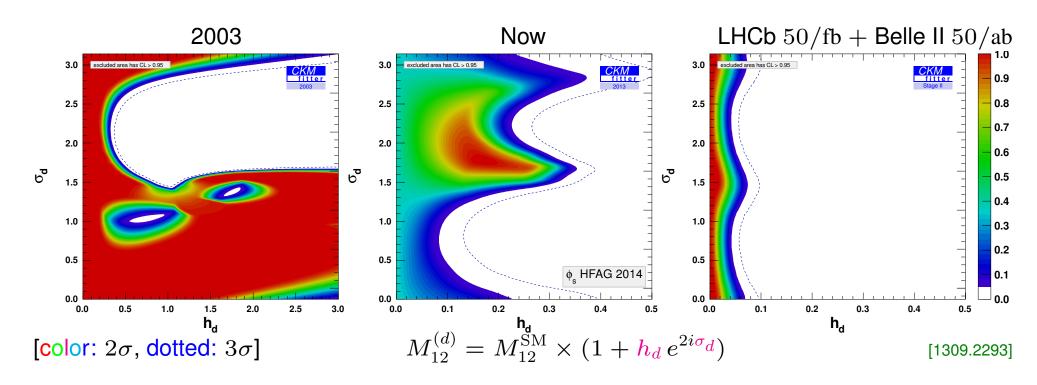
- Mechanisms devised to suppress this in all TeV-scale NP models (SUSY, etc.)
- SM-like Higgs e.g., SUSY: large A terms? extended Higgs sector? \rightarrow flavor?
- Sensitivity to higher scales is crucial, as we do not know where NP will show up

Inputs: many measurements & calculations

- Assume: (i) 3×3 CKM matrix is unitary; (ii) tree-level decays dominated by SM
- Need many measurements listed earlier, and lattice QCD improvements

[Charles et al., 1309.2293]

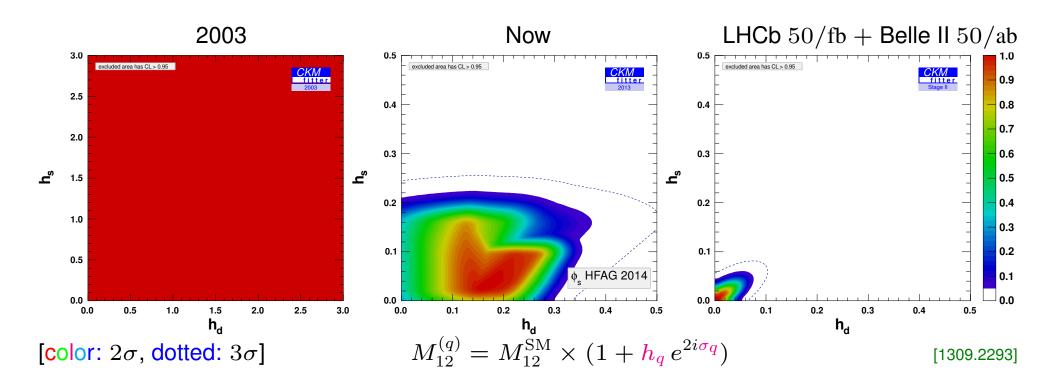
 If NP discovery hinges on one ingredient, will need cross-checks (e.g., lattice w/ different formulations)


e	2003	2013	Stage I		Stage II	
$ V_{ud} $	0.9738 ± 0.0004	$0.97425 \pm 0 \pm 0.00022$	id		id	
$ V_{us} $ $(K_{\ell 3})$	$0.2228 \pm 0.0039 \pm 0.0018$	$0.2258 \pm 0.0008 \pm 0.0012$	0.22494 ± 0.0006		id	
$ \epsilon_K $	$(2.282 \pm 0.017) \times 10^{-3}$	$(2.228\pm 0.011)\times 10^{-3}$	id		id	
$\Delta m_d \ [\mathrm{ps}^{-1}]$	0.502 ± 0.006	0.507 ± 0.004	id		id	
$\Delta m_s \ [\mathrm{ps}^{-1}]$	> 14.5 [95% CL]	17.768 ± 0.024	id		id	
$ V_{cb} \times 10^3 \ (b \to c \ell \bar{\nu})$	$41.6 \pm 0.58 \pm 0.8$	$41.15 \pm 0.33 \pm 0.59$	42.3 ± 0.4	[17]	42.3 ± 0.3	[17]
$ V_{ub} \times 10^3 \ (b \to u \ell \bar{\nu})$	$3.90 \pm 0.08 \pm 0.68$	$3.75 \pm 0.14 \pm 0.26$	3.56 ± 0.10	[17]	3.56 ± 0.08	[17]
$\sin 2\beta$	0.726 ± 0.037	0.679 ± 0.020	0.679 ± 0.016	[17]	0.679 ± 0.008	[17]
$\alpha \pmod{\pi}$		$(85.4^{+4.0}_{-3.8})^{\circ}$	$(91.5 \pm 2)^{\circ}$	[17]	$(91.5 \pm 1)^{\circ}$	[17]
$\gamma \pmod{\pi}$		$(68.0^{+8.0}_{-8.5})^{\circ}$	$(67.1 \pm 4)^{\circ}$	[17, 18]	$(67.1 \pm 1)^{\circ}$	[17, 18]
β_s		$0.0065^{+0.0450}_{-0.0415}$	0.0178 ± 0.012	[18]	0.0178 ± 0.004	[18]
$\mathcal{B}(B o au u) imes 10^4$		1.15 ± 0.23	0.83 ± 0.10	[17]	0.83 ± 0.05	[17]
$\mathcal{B}(B o \mu \nu) imes 10^7$			3.7 ± 0.9	[17]	3.7 ± 0.2	[17]
$A_{ m SL}^d imes 10^4$	10 ± 140	23 ± 26	-7 ± 15	[17]	-7 ± 10	[17]
$A_{ m SL}^{s} imes 10^4$		-22 ± 52	0.3 ± 6.0	[18]	0.3 ± 2.0	[18]
\bar{m}_c	$1.2\pm0\pm0.2$	$1.286 \pm 0.013 \pm 0.040$	1.286 ± 0.020		1.286 ± 0.010	
\bar{m}_t	167.0 ± 5.0	$165.8 \pm 0.54 \pm 0.72$	id		id	
$\alpha_s(m_Z)$	$0.1172 \pm 0 \pm 0.0020$	$0.1184 \pm 0 \pm 0.0007$	id		id	
B_K	$0.86 \pm 0.06 \pm 0.14$	$0.7615 \pm 0.0026 \pm 0.0137$	0.774 ± 0.007	[19, 20]	0.774 ± 0.004	[19, 20]
f_{B_s} [GeV]	$0.217 \pm 0.012 \pm 0.011$	$0.2256 \pm 0.0012 \pm 0.0054$	0.232 ± 0.002	[19, 20]	0.232 ± 0.001	[19, 20]
B_{B_s}	1.37 ± 0.14	$1.326 \pm 0.016 \pm 0.040$	1.214 ± 0.060	[19, 20]	1.214 ± 0.010	[19, 20]
f_{B_s}/f_{B_d}	$1.21 \pm 0.05 \pm 0.01$	$1.198 \pm 0.008 \pm 0.025$	1.205 ± 0.010	[19, 20]	1.205 ± 0.005	[19, 20]
B_{B_s}/B_{B_d}	1.00 ± 0.02	$1.036 \pm 0.013 \pm 0.023$	1.055 ± 0.010	[19, 20]	1.055 ± 0.005	[19, 20]
$\tilde{B}_{B_s}/\tilde{B}_{B_d}$	_	$1.01\pm0\pm0.03$	1.03 ± 0.02		id	
\tilde{B}_{B_S}		$0.91 \pm 0.03 \pm 0.12$	0.87 ± 0.06		id	

• γ and $|V_{ub}|$ are crucial (tree / reference UT): hope that $2-3\% |V_{ub}|$ uncertainty can be obtained from several measurements: $B \to \tau \nu$, $B \to \mu \nu$, $B \to \pi \ell \nu$, $\Lambda_b \to p \mu \nu$

New physics in B^0_d mixing

• 95% CL: NP \leq (many \times SM) \rightarrow NP \leq (0.3 \times SM) \rightarrow NP \leq (0.05 \times SM)


$$h \simeq \frac{|C_{ij}|^2}{|V_{ti}^* V_{tj}|^2} \left(\frac{4.5 \,\mathrm{TeV}}{\Lambda}\right)^2 - \text{Will reach: } \Lambda \sim \begin{cases} 2.3 \times 10^3 \,\mathrm{TeV} \\ 20 \,\mathrm{TeV} \text{ (tree + CKM)} \\ 2 \,\mathrm{TeV} \text{ (loop + CKM)} \end{cases}$$

Right sensitivity to be in the ballpark of gluino masses explored at LHC14

Magnitudes on NP in B^0_d and B^0_s mixing

- 95% CL: NP \leq (many \times SM) \rightarrow NP \leq (0.3 \times SM) \rightarrow NP < (0.05 \times SM)
- Sensitivity caught up with that in B_d mixing, and will improve comparably Slightly better sensitivity in B_s — less "background" in SM expectation

Future mixing sensitivity

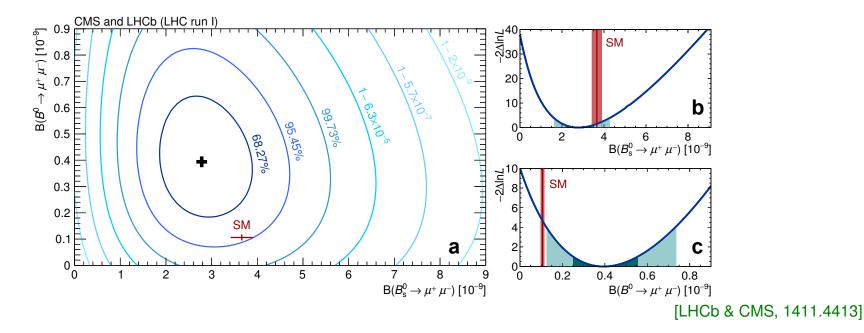
- Neutral meson mixing will remain a special process to search for new physics, sensitive to some of the highest scales
- Sensitivity to (C_q^2/Λ^2) $(\bar{b}_L\gamma^\mu q_L)^2$ with Belle II 50/ab + LHCb 50/fb [Charles et al., 1309.2293]

Couplings	NP loop	Scales (TeV) probed by	
Couplings	order	B_d mixing	B_s mixing
$ C_q = V_{tb}V_{tq}^* $	tree level	17	19
(CKM-like)	one loop	1.4	1.5
$ C_q = 1$	tree level	$2 imes 10^3$	5×10^2
(anarchic)	one loop	2×10^2	40

- Scales probed: $\Lambda \sim$ LHC (SM-like: CKM & loop suppression) $\Lambda \sim 10^3 \,\text{TeV}$ (anarchic flavor)
- MFV and non-MFV regions will have comparable constraints (unlike to date)

Crazy (?) questions

What are the largest useful data sets?


- What are the theory uncertainties that limit sensitivity to higher mass scales?
 - Known that $\gamma \equiv \phi_3$ can in principle be improved; theory limit: higher order EW
 - $B_{s,d} \rightarrow \mu\mu$, $B \rightarrow \mu\nu$ and other leptonic decays (lattice QCD, [double] ratios)
 - Possibly *CP* violation in *D* mixing (firm up theory)
- $A_{SL}^{d,s}$ (can get around exp. syst. limits?) [Worth thinking about: I guess $10^2 - 10^3 \times$ Belle II & LHCb upgrade?]
- In some decay modes, even in 2030 we'll have (exp. bound)/SM $\gtrsim 10^3$ E.g.: $B_{(s)} \rightarrow \tau^+ \tau^-$, $e^+ e^-$, can build models... I hope to be proven wrong!
- Ultimate precision of f_s/f_d and other production ratios? Any new ideas? Latest $f_s/f_d = 0.259 \pm 0.015$ appears not too far from systematics limited [LHCb-CONF-2013-011] Ultimately normalize to semileptonic, such as $\mathcal{B}(B_s \to \mu^+\mu^-)/\mathcal{B}(B_s \to D_s^-\mu^+\nu)$?
- New experimental analysis ideas?

Push $B_{s,d} o \mu^+ \mu^-$ to theory limit

• For B_d , CMS (LHCb) expect ultimately 15–20% (30–40%) precision at SM level SM uncertainty $\simeq (2\%) \oplus f_{B_q}^2 \oplus \text{CKM}$ [Bobeth]

• Theoretically cleanest $|V_{ub}|$ I know, only isospin: $\mathcal{B}(B_u \to \ell \bar{\nu})/\mathcal{B}(B_d \to \mu^+ \mu^-)$

• A decay with mass-scale sensitivity (dim.-6 operator) that competes w/ $K \rightarrow \pi \nu \bar{\nu}$

Final remarks

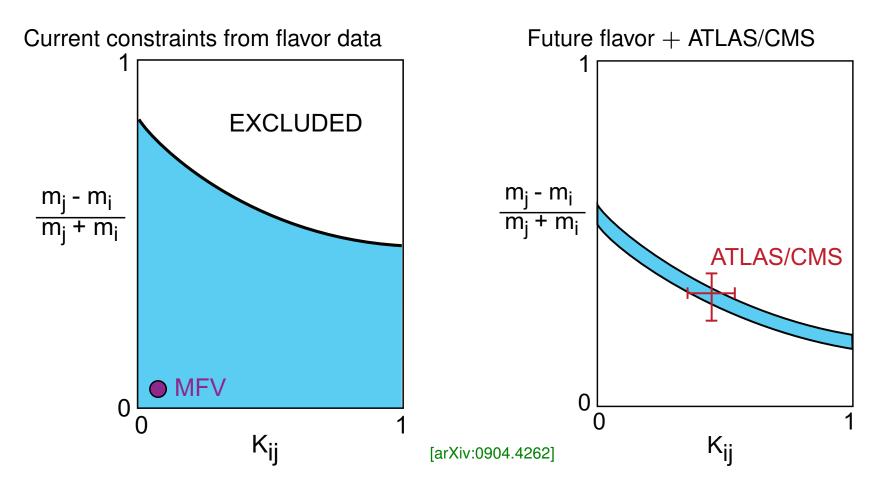
(Part of) a wish-list for theory

- New methods & ideas: recall that the best α and γ measurements are in modes proposed in light of Belle & BaBar data (i.e., not in the BaBar Physics Book)
 - Better SM upper bounds on $S_{\eta'K_S} S_{\psi K_S}$, $S_{\phi K_S} S_{\psi K_S}$, and $S_{\pi^0 K_S} S_{\psi K_S}$ (and similarly in B_s decays)
 - How big can *CP* violation be in $D^0 \overline{D}^0$ mixing (and in *D* decays) in the SM?
 - Better understanding of semileptonic form factors; bound on $S_{K_S\pi^0\gamma}$ in SM?
 - Inclusive & exclusive semileptonic decays
 - Many lattice QCD calculations (operators within and beyond SM)
 - Factorization at subleading order (different approaches), charm loops
 - Can direct CP asymmetries in nonleptonic modes be understood enough to make them "discovery modes"? [SU(3), the heavy quark limit, etc.]
- We know how to make progress on some + discover new frameworks / methods?

Conclusions

- Flavor physics probes scales $\gg 1 \,\mathrm{TeV}$; sensitivity limited by statistics, not theory
- New physics in most FCNC processes may still be $\gtrsim 20\%$ of the SM or more
- Few discrepancies in SM fit; some of these (or others) may become decisive
- Precision tests of SM will improve by $10^1 10^4$ in many channels (CLFV)
- Flavor physics data will tell us a lot, whether NP is discovered or not

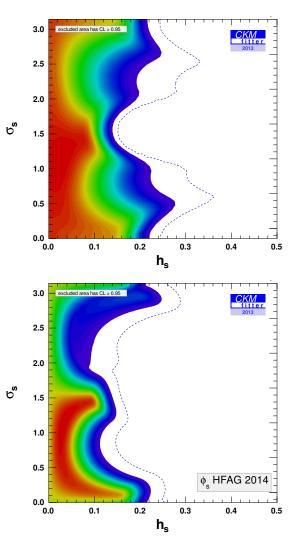
Evidence for BSM?		FLAVOR		
		yes	no	
ATLAS & CMS	yes	complementary information	distinguish models	
	no	tells us where to look next	flavor is the best microscope	

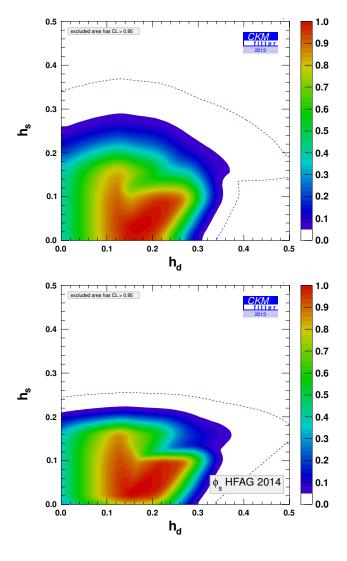

If new physics is discovered, many new questions about its structure and origin
 E.g., possible convergence between (s)quark and (s)lepton flavor physics

Flavor / high- p_T complementarity

Combination of LHC and flavor data can be very powerful to discriminate models

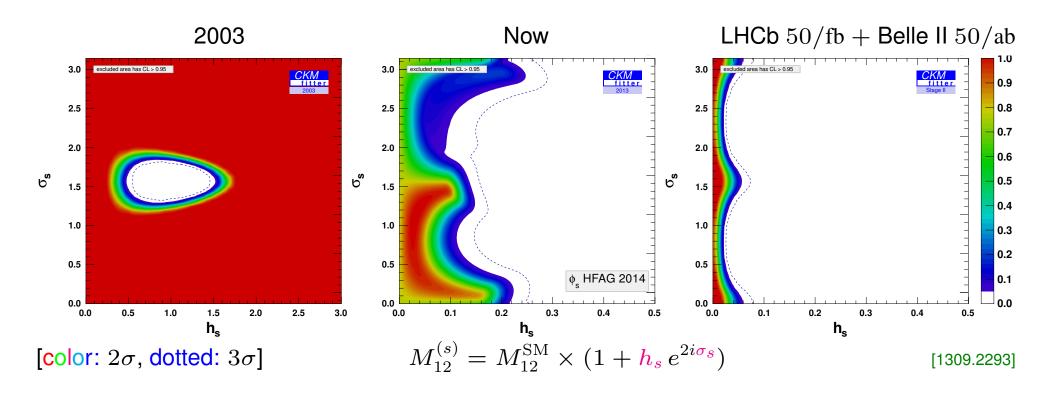
• Let's hope we'll be in such a situation...



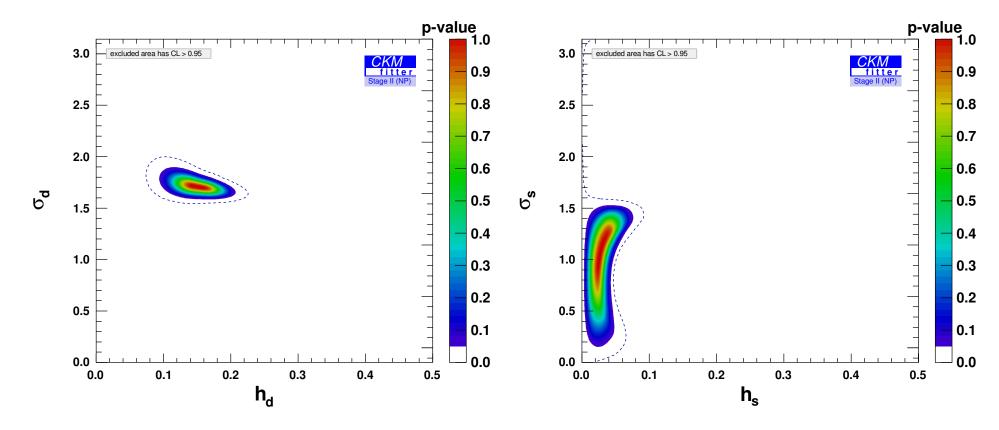

Backup slides

2013 ightarrow 2015: impact of eta_s with 1 ightarrow 3/fb

2013:

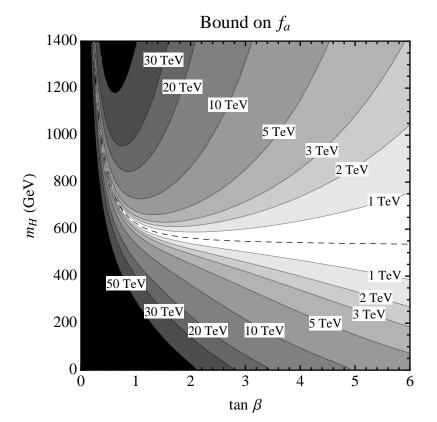

• Improvement mainly in h_s as expected

New physics in B_s^0 mixing


• Sensitivity caught up with that in B_d mixing, and will improve comparably Slightly better sensitivity in B_s — less "background" in SM expectation

Can such fits discover NP?

Interesting to see if NP can be discovered and not only constrained


Any assumption about future NP signals is ad hoc — simplest scenario: assume all future (Stage II) experimental results correspond to the current best-fit values of $\bar{\rho}$, $\bar{\eta}$, $h_{d,s}$, $\sigma_{d,s}$

Dark sectors: bumps in $B \to K^{(*)} \ell^+ \ell^-$?

• Can probe certain DM models with *B* decays E.g., "axion portal": light ($\leq 1 \,\text{GeV}$) scalar particle coupling as $(m_{\psi}/f_a) \, \bar{\psi} \gamma_5 \psi \, a$

[[]Freytsis, ZL, Thaler, arXiv:0911.5355]

• In most of parameter space best bound is from $B \to K \ell^+ \ell^-$

The MSSM parameters and flavor

• Superpotential:

[Haber, hep-ph/9709450]

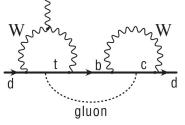
$$W = \sum_{i,j} \left(Y_{ij}^{u} H_{u} Q_{Li} \bar{U}_{Lj} + Y_{ij}^{d} H_{d} Q_{Li} \bar{D}_{Lj} + Y_{ij}^{\ell} H_{d} L_{Li} \bar{E}_{Lj} \right) + \mu H_{u} H_{d}$$

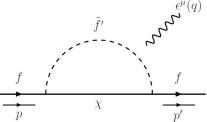
Soft SUSY breaking terms: $(S = \tilde{Q}_L, \tilde{\bar{D}}_L, \tilde{\bar{L}}_L, \tilde{\bar{E}}_L)$ $\mathcal{L}_{\text{soft}} = -\left(A^u_{ij}H_u\tilde{Q}_{Li}\tilde{\bar{U}}_{Lj} + A^d_{ij}H_d\tilde{Q}_{Li}\tilde{\bar{D}}_{Lj} + A^\ell_{ij}H_d\tilde{L}_{Li}\tilde{\bar{E}}_{Lj} + BH_uH_d\right)$ $-\sum_{\text{scalars}} (m_S^2)_{ij}S_i\bar{S}_j - \frac{1}{2}\left(M_1\tilde{B}\tilde{B} + M_2\tilde{W}\tilde{W} + M_3\tilde{g}\tilde{g}\right)$

 $3 Y^{f}$ Yukawa and $3 A^{f}$ matrices — $6 \times (9 \text{ real} + 9 \text{ imaginary})$ parameters $5 m_{S}^{2}$ hermitian sfermion mass-squared matrices — $5 \times (6 \text{ real} + 3 \text{ imag.})$ param's

Gauge and Higgs sectors: $g_{1,2,3}, \theta_{\text{QCD}}, M_{1,2,3}, m_{h_{u,d}}^2, \mu, B - 11 \text{ real} + 5 \text{ imag.}$

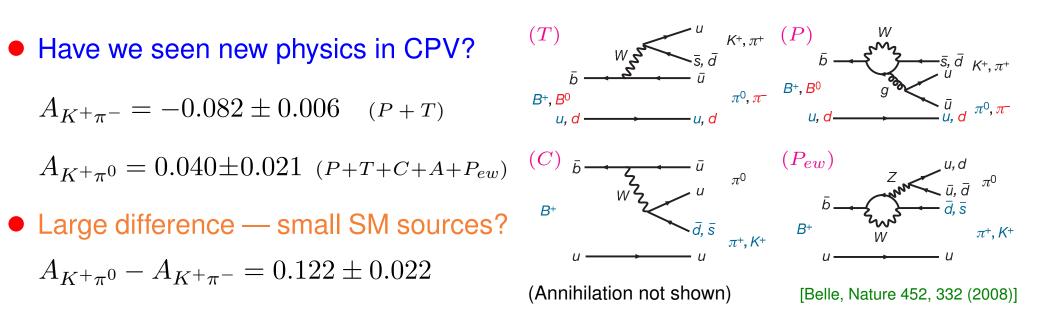
Parameters: (95 + 74) - (15 + 30) from $U(3)^5 \times U(1)_{PQ} \times U(1)_R \rightarrow U(1)_B \times U(1)_L$


• 44 CPV phases: CKM + 3 in M_1, M_2, μ (set $\mu B^*, M_3$ real) + 40 in mixing matrices of fermion-sfermion-gaugino couplings (+80 real param's)



Electric dipole moments and SUSY

- SM + m_{ν} : CPV can occur in: (i) quark mixing; (ii) lepton mixing; and (iii) θ_{QCD} Only observed $\delta_{\text{KM}} \neq 0$, baryogenesis implies there must be more
- Neutron EDM bound: "The strong *CP* problem:" $\theta_{QCD} < 10^{-10}$ axion? θ_{QCD} is negligible for CPV in flavor-changing processes
- EDMs from CKM: vanish at one- and two-loop large suppression of this diagram


- In SUSY, both quark and lepton EDMs can be generated at one-loop Generic prediction (TeV-scale, no small param's) above current bounds; if $m_{\rm SUSY} \sim O(10 \,{\rm TeV})$, may still discover EDMs
- Expected 10^2 – 10^3 improvements: complementary to LHC

Not understood: the $B ightarrow K\pi$ puzzle

SCET / factorization predicts: $\arg(C/T) = \mathcal{O}(\Lambda_{QCD}/m_b)$ and $A + P_{ew}$ small

- Large fluctuations? Breakdown of $1/m \exp$? Missing something subtle? BSM? No similar tension in branching ratio sum rules and SU(3) relations
- Can we unambiguously understand theory, so that such data could disprove SM?

