# Study of anomalous tau lepton decay using chiral Lagrangian with vector mesons 

Takuya Morozumi
(Hiroshima U.)
Daiji Kimura
(Ube National college of Tech.)
Hiroyuki Umeeda
(Hiroshima U.)

## Anomalous tau decay

- $\tau$ hadronic decays
which involves Intrinsic parity violation
$\boldsymbol{\tau}^{-} \rightarrow \boldsymbol{\eta} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{\mathbf{0}} \mathbf{v}$ through vector current



## Intrinsic Parity violation(IPV)

 versus G parity (Isospin) violation- $<\eta \pi^{-} \pi^{0}\left|\bar{d} \gamma_{\mu} \mathbf{u}\right| 0><\eta \quad \pi^{-} \pi^{0}\left|\bar{d} \gamma_{\mu} \gamma_{5} \mathbf{u}\right| 0>$

Intrinsic Parity $\quad \mathrm{V}(+1) \rightarrow \eta \pi^{-} \pi^{0}(-1)$
G parity $A(-1) \rightarrow \eta \pi \pi^{0}(+1)$

Axial vector contribution is suppressed by (approximate) G parity conservation


We aim to compute both Vector and Axial vector form factors.

## Contribution to Vector form factor

$\mathrm{V}=\bar{d} \gamma_{\mu} \mathbf{u}$

1. $V \rightarrow \pi^{0} n$
2. $v \rightarrow \rho^{-} \rightarrow \pi^{-} \pi^{0} \eta$
3. $v \rightarrow-\rho^{-} \eta \rightarrow \pi^{-} \pi^{0} \eta$ $\rho \pi^{0} \rightarrow \pi^{-} \pi^{0} \eta$

4. 



## IPV interactions in the vector form factor



IPV interactions related to the other processes $v=$ vector meson, $\pi=$ pseudo-scalar
$\cdot v \rightarrow \pi \pi \pi$
$\cdot v \rightarrow \pi Y$
$\cdot \pi \rightarrow \mathrm{V} Y$
$\cdot \pi \rightarrow P V$
$\rho \rightarrow \pi \quad \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$
$\rho \rightarrow \pi \gamma$
$\eta^{\prime} \rightarrow \omega \nu$
$\pi \rightarrow \gamma \nu$

## Theoretical Framework

- Chiral Lagrangian with vector mesons
- Including $\phi$ and $\eta_{0}$ mesons
- Including IPV interactions

$$
\begin{aligned}
\mathcal{L}_{\chi}= & \frac{f^{2}}{4} \operatorname{Tr}\left(D_{L \mu} U D_{L}^{\mu} U^{\dagger}\right)+B \operatorname{Tr}\left[M\left(U+U^{\dagger}\right)\right]+\frac{1}{2} \partial_{\mu} \eta_{0} \partial^{\mu} \eta_{0}-\frac{1}{2} M_{00}^{2} \eta_{0}^{2} \\
& +\frac{1}{2} M_{0 V}^{2} \phi_{\mu}^{0} \phi^{0 \mu}-\frac{Z_{0 V}}{4} F_{\mu \nu}^{0} F^{0 \mu \nu}+g_{1 V} \phi_{\mu}^{0} \operatorname{Tr}\left\{\left(V^{\mu}-\frac{\alpha^{\mu}}{g}\right)\left(\frac{\xi M \xi+\xi^{\dagger} M \xi^{\dagger}}{2}\right)\right\} \\
& -i g_{2 p} \eta_{0} \operatorname{Tr}\left[M\left(U-U^{\dagger}\right)\right]+M_{V}^{2} \operatorname{Tr}\left(V_{\mu}-\frac{\alpha_{\mu}}{g}\right)^{2}+C \operatorname{trQUQUU^{\dagger },}
\end{aligned}
$$

## Intrinsic Parity violating term


$\mathcal{L}_{1}=i \epsilon^{\mu \nu \rho \sigma} \operatorname{Tr}\left[\alpha_{L \mu} \alpha_{L \nu} \alpha_{L \rho} \alpha_{R \sigma}-(R \leftrightarrow L)\right]$,
$\mathcal{L}_{2}=i \epsilon^{\mu \nu \rho \sigma} \operatorname{Tr}\left[\alpha_{L \mu} \alpha_{R \nu} \alpha_{L \rho} \alpha_{R \sigma}\right]$,
$\mathcal{L}_{3}=-\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} \operatorname{Tr}\left[F_{V \mu \nu}\left\{\alpha_{L \rho} \alpha_{R \sigma}-(R \leftrightarrow L)\right\}\right]$,
$\mathcal{L}_{4}=\epsilon^{\mu \nu \rho \sigma} \operatorname{Tr}\left(\hat{F}_{L}+\hat{F}_{R}\right)\left\{\alpha_{L \rho}, \alpha_{R \sigma}\right\}$
Fit results
$\mathcal{L}_{5}=\epsilon^{\mu \nu \rho \sigma} F_{V \mu \nu}^{0} \operatorname{Tr}\left[\alpha_{L \rho} \alpha_{R \sigma}-(R \leftrightarrow L)\right]$
C3=0.0974
$\mathcal{L}_{6}=\frac{\eta_{0}}{f} \epsilon^{\mu \nu \rho \sigma} \operatorname{Tr} F_{V \mu \nu} F_{V \rho \sigma}$
C4=0.0042
C5=-0.718
$\mathcal{L}_{7}=\frac{\eta_{0}}{f} \epsilon^{\mu \nu \rho \sigma} F_{V \mu \nu}^{0} F_{V \rho \sigma}^{0}$
$C 6=-0.340$
$C 7=-4.295$

# Determining coefficients from $V \rightarrow P_{\gamma}, P \rightarrow V \gamma, V \rightarrow V^{\prime} P$ 



$\rho^{+} \quad 4.5 \times 10^{-4}$
(0.02663)
$K^{0^{*}}$
$2.46 \times 10^{-3}$
(0.03311)
$\mathrm{K}^{+}$
$9.9 \times 10^{-4}$
(0.019098)


## Numerical results of hadronic mass distribution

We calculate hadronic mass distribution and fit the parameters $C_{1}, C_{2}, C_{3}$.
Differential branching ratio
Kuhn, Mirkes, Z.Phys.C56,661(1992)

$$
d B r\left(\tau^{-} \rightarrow \eta \pi^{-} \pi^{0} \nu_{\tau}\right)=\frac{1}{2 m_{\tau} \Gamma_{\tau}}\left|\mathcal{M}\left(\tau^{-} \rightarrow \eta \pi^{-} \pi^{0} \nu_{\tau}\right)\right|^{2} d P S
$$

We compare our model with the experimental data;

$$
\frac{\Delta N}{\Delta M}=\frac{N}{B r_{\exp }} \frac{d B r}{d M}
$$

where, $\quad M=M_{\pi^{0} \pi^{-}}, M_{\pi^{0} \pi^{-}} \eta^{\text {e }}$ e hadronic invariant mass.
Theory distribution $\mathrm{dBr} / d M$ includes the parameters $C_{1}-C_{2}$ and $C_{3}$.
$N$ is the total event number. $\Delta N$ and $\Delta M$ are the event number in each
bin and the bin width, respectively.
After $C_{1}-C_{2}$ and $C_{3}$ are fixed, we obtain the branching ratio.

We fit our model to $\pi^{0} \pi^{-}$invariant mass distribution of Belle data.
$\rho$ resonance



Our model
Parameters are fixed by $C_{1}-C_{2}=-0.0174, C_{3}=0.0485$.
Branching ratio of $\tau^{-} \rightarrow \eta \pi^{-} \pi^{0} v_{\tau}$ decay,

| Our model (1) | Belle | PDG |
| :---: | :---: | :---: |
| $1.22 \times 10^{-3}$ | $1.35 \times 10^{-3}$ | $1.39 \times 10^{-3}$ |

## Hadronic mass distributions (2)

We fit our model to $\pi^{0} \pi^{-} \eta$ invariant mass distribution of Belle data.



Parameters are fixed by $C_{1}-C_{2}=0.0350, C_{3}=-0.0104$.
Branching ratio of $\tau^{-} \rightarrow \eta \pi^{-} \pi^{0} v_{\tau}$ decay,

| Our model (2) | Belle | PDG |
| :---: | :---: | :---: |
| $1.31 \times 10^{-3}$ | $1.35 \times 10^{-3}$ | $1.39 \times 10^{-3}$ |

## Hadronic mass distributions (3)

Hadron invariant mass distribution from axial vector current part


Branching ratio of $\tau^{-} \rightarrow \eta \pi^{-} \pi^{0} \nu_{\tau}$ decay,

| Axial vector part | Belle | PDG |
| :---: | :---: | :---: |
| $2.1 \times 10^{-5}$ | $1.35 \times 10^{-3}$ | $1.39 \times 10^{-3}$ |

## 5. Summary

- We have studied $\tau^{-} \rightarrow \eta \pi^{-} \pi^{0} v_{\tau}$ decay which occurs mainly due to vector current interaction (intrinsic parity violating interaction).
- Taking into account the isospin violation, we determined the mixing matrix of $\pi^{0}$ and $\eta, \eta$ '. The contribution to the branching ratio of the axial current interaction part is small, $O\left(10^{-5}\right)<B r \simeq 10^{-3}$.
- We calculated the hadronic mass distribution. By fitting the theory distribution to Belle data, we fixed the coefficients
$C_{1}-C_{2}, C_{3}$ of interaction Lagrangian with intrinsic parity violation.
- We also have fixed $C_{3} \sim C_{7}$ by using the other decay modes, e.g. $\rho^{+} \rightarrow \pi^{+}$ $\gamma, \omega \rightarrow \pi^{0}(\eta) \gamma, \phi \rightarrow \pi^{0}(\eta) \gamma, \ldots$.

