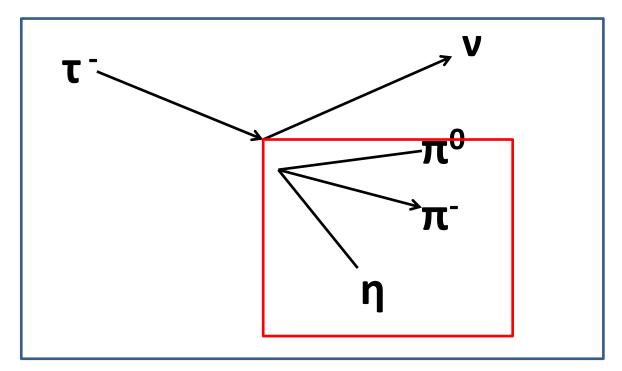
### Study of anomalous tau lepton decay using chiral Lagrangian with vector mesons


Takuya Morozumi (Hiroshima U.) Daiji Kimura (Ube National college of Tech.) Hiroyuki Umeeda (Hiroshima U.)

# Anomalous tau decay

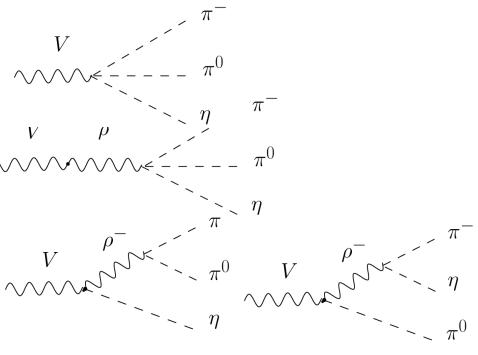
• τ hadronic decays

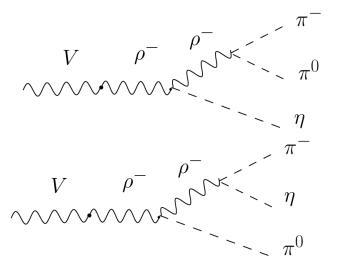
which involves Intrinsic parity violation

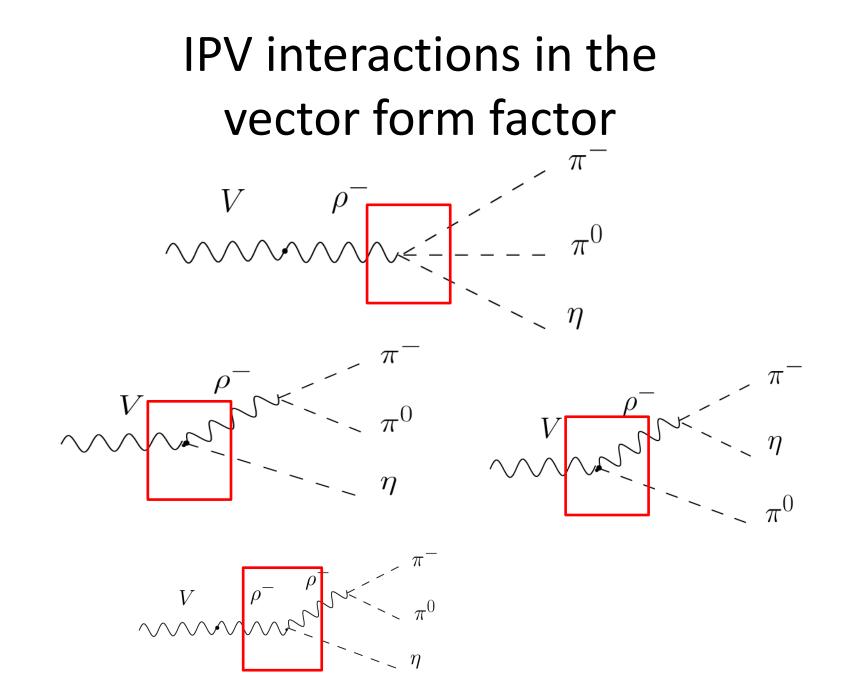
 $\tau^- \rightarrow \eta \pi^- \pi^0 \nu$  through vector current



Intrinsic Parity violation(IPV)versus G parity (Isospin) violation• <  $\eta \pi^- \pi^0 | \overline{d} \gamma_\mu u | 0 > < \eta \pi^- \pi^0 | \overline{d} \gamma_\mu \gamma_5 u | 0 >$ Intrinsic ParityV(+1)  $\rightarrow \eta \pi^- \pi^0$  (-1)G parityA(-1)  $\rightarrow \eta \pi^- \pi^0$  (+1)


Axial vector contribution is suppressed by (approximate) G parity conservation


We aim to compute both Vector and Axial vector form factors.


### Contribution to Vector form factor $V = \overline{d} \gamma_{\mu} u$ 1. $V \rightarrow \pi^{-} \pi^{0} \eta$

2.  $V \rightarrow \rho^{-} \rightarrow \pi^{-} \pi^{0} \eta$ 

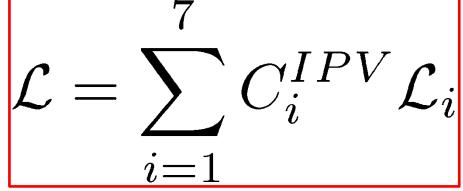
3.  $V \rightarrow \rho^{-}\eta \rightarrow \pi^{-}\pi^{0}\eta$   $\rho^{-}\pi^{0} \rightarrow \pi^{-}\pi^{0}\eta$ 4.  $V \rightarrow \rho^{-}\eta \rightarrow \pi^{-}\pi^{0}\eta$   $\rho^{-}\pi^{0} \rightarrow \pi^{-}\pi^{0}\eta$  $\rho^{-}\pi^{0} \rightarrow \pi^{-}\pi^{0}\eta$ 







IPV interactions related to the other processes v=vector meson,  $\pi$ =pseudo-scalar


- $v \rightarrow \pi \pi \pi$  $\rho \rightarrow \pi \pi^+ \pi^-$
- $v \rightarrow \pi \gamma$  $\rho \rightarrow \pi \gamma$
- $\pi \rightarrow v \gamma$  $\eta' \rightarrow \omega \gamma$  $\pi \rightarrow \gamma \gamma$
- $\pi \rightarrow \gamma \gamma$

# **Theoretical Framework**

- Chiral Lagrangian with vector mesons
- Including  $\varphi$  and  $\eta_0$  mesons
- Including IPV interactions

$$\begin{aligned} \mathcal{L}_{\chi} &= \frac{f^2}{4} \operatorname{Tr}(D_{L\mu} U D_L^{\mu} U^{\dagger}) + B \operatorname{Tr}[M(U+U^{\dagger})] + \frac{1}{2} \partial_{\mu} \eta_0 \partial^{\mu} \eta_0 - \frac{1}{2} M_{00}^2 \eta_0^2 \\ &+ \frac{1}{2} M_{0V}^2 \phi_{\mu}^0 \phi^{0\mu} - \frac{Z_{0V}}{4} F_{\mu\nu}^0 F^{0\mu\nu} + g_{1V} \phi_{\mu}^0 \operatorname{Tr}\left\{ \left( V^{\mu} - \frac{\alpha^{\mu}}{g} \right) \left( \frac{\xi M \xi + \xi^{\dagger} M \xi^{\dagger}}{2} \right) \right\} \\ &- i g_{2p} \eta_0 \operatorname{Tr}[M(U-U^{\dagger})] + M_V^2 \operatorname{Tr}\left( V_{\mu} - \frac{\alpha_{\mu}}{g} \right)^2 + C \operatorname{tr} Q U Q U^{\dagger}, \end{aligned}$$

# Intrinsic Parity violating term



$$\mathcal{L}_1 = i\epsilon^{\mu\nu\rho\sigma} \mathrm{Tr}[\alpha_{L\mu}\alpha_{L\nu}\alpha_{L\rho}\alpha_{R\sigma} - (R\leftrightarrow L)],$$

$$\mathcal{L}_2 = i\epsilon^{\mu\nu\rho\sigma} \operatorname{Tr}[\alpha_{L\mu}\alpha_{R\nu}\alpha_{L\rho}\alpha_{R\sigma}],$$

$$\mathcal{L}_{3} = -\frac{1}{2} \epsilon^{\mu\nu\rho\sigma} \operatorname{Tr}[F_{V\mu\nu}\{\alpha_{L\rho}\alpha_{R\sigma} - (R\leftrightarrow L)\}],$$

$$\mathcal{L}_4 = \epsilon^{\mu\nu\rho\sigma} \operatorname{Tr}(\hat{F}_L + \hat{F}_R) \{\alpha_{L\rho}, \alpha_{R\sigma}\}$$

$$\mathcal{L}_5 = \epsilon^{\mu\nu\rho\sigma} F^0_{V\mu\nu} \operatorname{Tr}[\alpha_{L\rho}\alpha_{R\sigma} - (R \leftrightarrow L)]$$

$$\mathcal{L}_6 = \frac{\eta_0}{f} \epsilon^{\mu\nu\rho\sigma} \mathrm{Tr} F_{V\mu\nu} F_{V\rho\sigma}$$

$$\mathcal{L}_7 = \frac{\eta_0}{f} \epsilon^{\mu\nu\rho\sigma} F^0_{V\mu\nu} F^0_{V\rho\sigma}$$

Fit results C3=0.0974 C4=0.0042 C5=-0.718 C6=-0.340 C7=-4.295

| Determining coefficients<br>from V $\rightarrow$ P $\gamma$ , P $\rightarrow$ V $\gamma$ , V $\rightarrow$ V'P |                                      |                                         |                                      |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------|
|                                                                                                                | π <sup>0</sup> γ                     | ηγ                                      | η΄ γ                                 |
| ρ <sup>0</sup>                                                                                                 | 6.0 ×10 <sup>-4</sup><br>(1.00264)   | 3.0 ×10 <sup>-4</sup><br>(0.01185)      | Br.<br>(theory/experiment)           |
| ω                                                                                                              | 8.28 × 10 <sup>-2</sup><br>(0.00293) | 4.6 × 10 <sup>-4</sup><br>(0.209766)    |                                      |
| φ                                                                                                              | 1.27 ×10 <sup>-3</sup><br>(1.26819)  | 1.309 × 10 <sup>- 3</sup><br>(0.127605) | 6.25 × 10 <sup>-5</sup><br>(1.37306) |

|   | ργ    | ωγ                       |
|---|-------|--------------------------|
| η | 29.1% | 2.75 <b>%</b><br>(2.616) |

|                 | π+γ                                 | <b>k</b> <sup>0</sup> γ             | Κ+ γ                                 |
|-----------------|-------------------------------------|-------------------------------------|--------------------------------------|
| ρ+              | 4.5 × 10 <sup>-4</sup><br>(0.02663) |                                     |                                      |
| K <sup>0*</sup> |                                     | 2.46 ×10 <sup>-3</sup><br>(0.03311) |                                      |
| K+*             |                                     |                                     | 9.9 × 10 <sup>-4</sup><br>(0.019098) |

|                | γγ        |   |                         |
|----------------|-----------|---|-------------------------|
| π <sup>0</sup> | 98.823 %  |   | ω π <sup>0</sup>        |
|                | (1.046)   | φ | 4.7 × 10 <sup>- 5</sup> |
| η              | 39.41 %   |   | (1.0)                   |
|                | (0.62054) |   |                         |
| η'             | 2.22 %    |   |                         |
|                | (0.80117) |   |                         |

#### Numerical results of hadronic mass distribution

We calculate hadronic mass distribution and fit the parameters  $C_1$ ,  $C_2$ ,  $C_3$ .

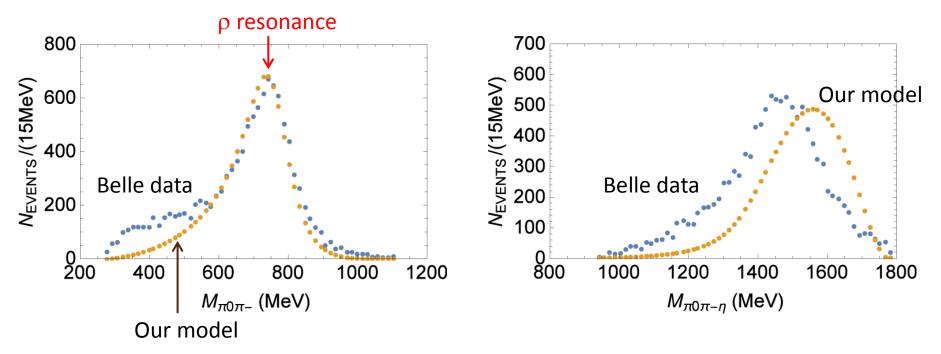
Differential branching ratio

Kuhn, Mirkes, Z.Phys.C56,661(1992)

$$dBr(\tau^- \to \eta \pi^- \pi^0 \nu_\tau) = \frac{1}{2m_\tau \Gamma_\tau} |\mathcal{M}(\tau^- \to \eta \pi^- \pi^0 \nu_\tau)|^2 dPS$$

We compare our model with the experimental data;

$$\frac{\Delta N}{\Delta M} = \frac{N}{Br_{\rm exp}} \frac{dBr}{dM}$$


where,  $M = M_{\pi^0\pi^-}, M_{\pi^0\pi^-\eta}$  e hadronic invariant mass.

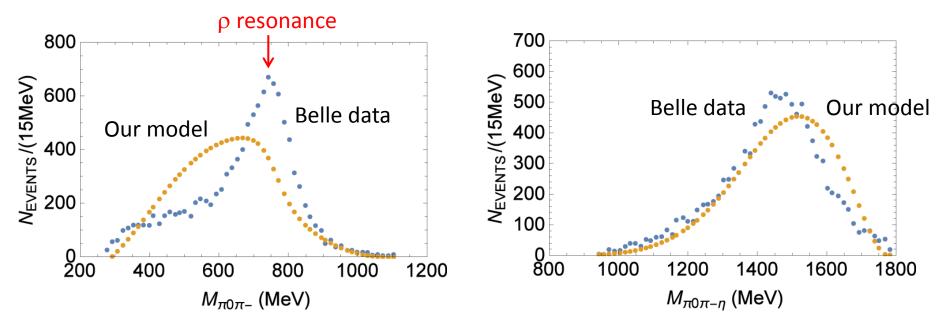
Theory distribution dBr/dM includes the parameters  $C_1 - C_2$  and  $C_3$ . *N* is the total event number.  $\Delta N$  and  $\Delta M$  are the event number in each bin and the bin width, respectively.

After  $C_1 - C_2$  and  $C_3$  are fixed, we obtain the branching ratio.

#### Hadronic mass distributions (1)

We fit our model to  $\pi^0 \pi^-$  invariant mass distribution of Belle data.




Parameters are fixed by  $C_1 - C_2 = -0.0174$ ,  $C_3 = 0.0485$ .

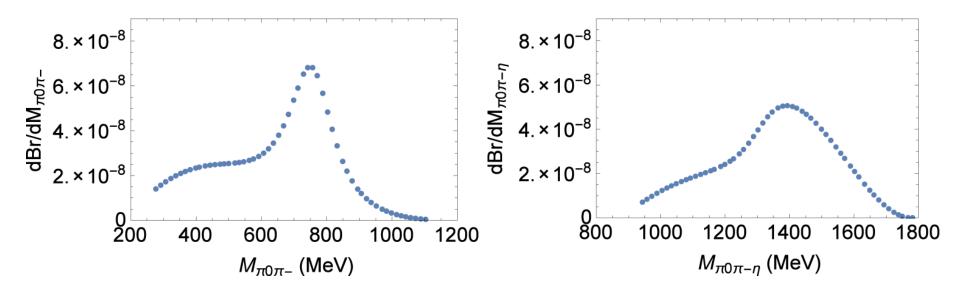
Branching ratio of  $\tau^- \rightarrow \eta \pi^- \pi^0 \nu_{\tau}$  decay,

| Our model (1)         | Belle                 | PDG                   |
|-----------------------|-----------------------|-----------------------|
| $1.22 \times 10^{-3}$ | $1.35 \times 10^{-3}$ | $1.39 \times 10^{-3}$ |

#### Hadronic mass distributions (2)

We fit our model to  $\pi^0 \pi^- \eta$  invariant mass distribution of Belle data.




Parameters are fixed by  $C_1 - C_2 = 0.0350$ ,  $C_3 = -0.0104$ .

Branching ratio of  $\tau^- \rightarrow \eta \pi^- \pi^0 \nu_{\tau}$  decay,

| Our model (2)         | Belle                 | PDG                   |
|-----------------------|-----------------------|-----------------------|
| $1.31 \times 10^{-3}$ | $1.35 \times 10^{-3}$ | $1.39 \times 10^{-3}$ |

#### Hadronic mass distributions (3)

Hadron invariant mass distribution from axial vector current part



Branching ratio of  $\tau^- \rightarrow \eta \pi^- \pi^0 \nu_{\tau}$  decay,

| Axial vector part    | Belle                 | PDG                   |
|----------------------|-----------------------|-----------------------|
| $2.1 \times 10^{-5}$ | $1.35 \times 10^{-3}$ | $1.39 \times 10^{-3}$ |

#### 5. Summary

- We have studied τ<sup>-</sup> → η π<sup>-</sup> π<sup>0</sup> ν<sub>τ</sub> decay which occurs mainly due to vector current interaction (intrinsic parity violating interaction).
- Taking into account the isospin violation, we determined the mixing matrix of π<sup>0</sup> and η, η'. The contribution to the branching ratio of the axial current interaction part is small, O(10<sup>-5</sup>) < Br ~ 10<sup>-3</sup>.
- We calculated the hadronic mass distribution. By fitting the theory distribution to Belle data, we fixed the coefficients
  C<sub>1</sub>-C<sub>2</sub>, C<sub>3</sub> of interaction Lagrangian with intrinsic parity violation.
- We also have fixed  $C_3 \ C_7$  by using the other decay modes, e.g.  $\rho^+ \rightarrow \pi^+ \gamma$ ,  $\omega \rightarrow \pi^0$  ( $\eta$ )  $\gamma$ ,  $\phi \rightarrow \pi^0$  ( $\eta$ )  $\gamma$ , ....