Precise calculation of muon g-2 based on lattice QCD

Taku Izubuchi (RBC&UKQCD collaboration)

Collaborators / Machines

Tom Blum (Connecticut)

Peter Boyle (Edinburgh)

Norman Christ (Columbia)

Vera Guelpers (Southampton)

Masashi Hayakawa (Nagoya)

James Harrison (Southampton)

Mattia Bruno (BNL/Cern)

Christoph Lehner (BNL)

Kim Maltman (York)

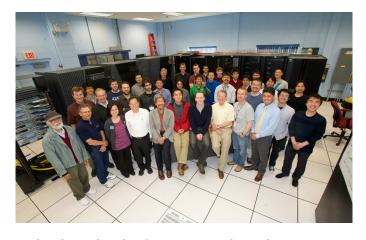
Chulwoo Jung (BNL)

Andreas Jüttner (Southampton)

Luchang Jin (Connecticut / RBRC)

Antonin Portelli (Edinburgh)

Aaron Meyer (BNL)

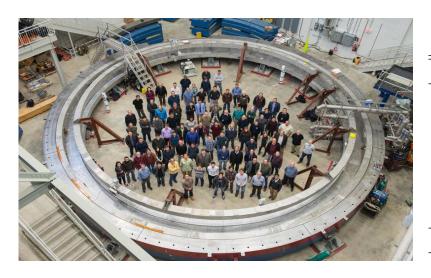


Part of related calculation are done by resources from USQCD (DOE), XSEDE, ANL BG/Q Mira (DOE, ALCC), Edinburgh BG/Q, BNL BG/Q, RIKEN BG/Q and Cluster (RICC, HOKUSAI)

Reference

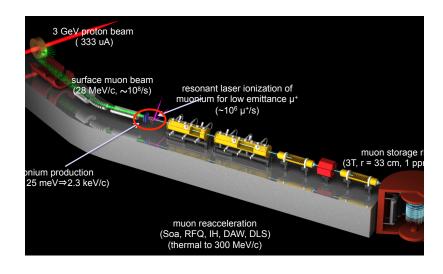
- g-2 HVP Phys. Rev. Lett. 121 (2018) 022003
- g-2 Hadronic Light-by-Light (HLbL)
 Phys. Rev. D96 (2017) 034515
 Phys. Rev. Lett. 118 (2017) 022005
- Tau input for g-2PoS Lattice 2018 (2018) 135

muon anomalous magnetic moment



BNL g-2 till 2004 : \sim 3.7 σ larger than SM prediction

Contribution	Value $ imes 10^{10}$	Uncertainty $ imes 10^{10}$
QED (5 loops)	11 658 471.895	0.008
EW	15.4	0.1
HVP LO	692.3	4.2
HVP NLO	-9.84	0.06
HVP NNLO	1.24	0.01
Hadronic light-by-light	10.5	2.6
Total SM prediction	11 659 181.5	4.9
BNL E821 result	11 659 209.1	6.3
FNAL E989/J-PARC E34 goal		≈ 1.6

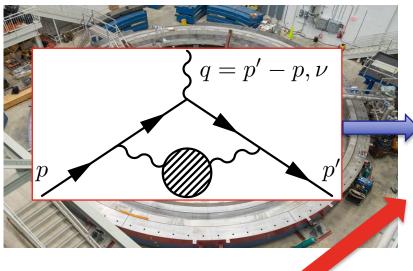


$$a_{\mu}^{\mathrm{EXP}} - a_{\mu}^{\mathrm{SM}} = 27.4 \underbrace{(2.7)}_{\mathrm{HVP}} \underbrace{(2.6)}_{\mathrm{HLbL}} \underbrace{(0.1)}_{\mathrm{other}} \underbrace{(6.3)}_{\mathrm{EXP}} \times 10^{-10}$$

FNAL E989 (began 2017-) move storage ring from BNL x4 more precise results, 0.14ppm

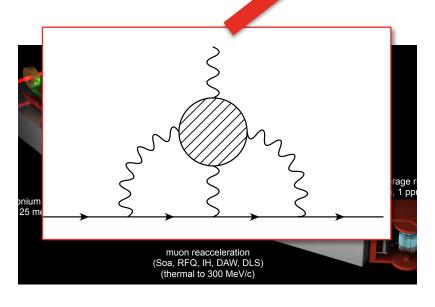
J-PARC E34 ultra-cold muon beam 0.37 ppm then 0.1 ppm, also EDM

muon anomalous magnetic moment



BNL g-2 till 2004 : \sim 3.7 σ larger than SM prediction

=	Contribution	Value $ imes 10^{10}$	Uncertainty $ imes 10^{10}$
-	QED (5 loops)	11 658 471.895	0.008
	EW	15.4	0.1
	HVP LO	692.3	4.2
	HVP NLO	-9.84	0.06
	HVP NNLO	1.24	0.01
	Hadronic light-by-light	10.5	2.6
_	Total SM prediction	11 659 181.5	4.9
	BNL E821 result	11 659 209.1	6.3
	FNAL E989/J-PARC E34 goal		pprox 1.6



$$a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} = 27.4 \underbrace{(2.7)}_{\text{HVP HLbL other EXP}} \underbrace{(0.1)}_{\text{EXP}} \underbrace{(6.3)}_{\text{EXP}} \times 10^{-10}$$

FNAL E989 (began 2017-)

move storage ring from BNL

x4 more precise results, 0.14ppm

J-PARC E34 ultra-cold muon beam 0.37 ppm then 0.1 ppm, also EDM

[Luchang Jin's analogy]

Precession of Mercury and GR

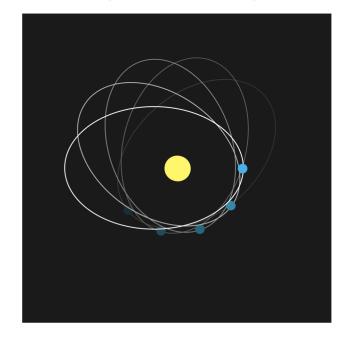
Amount (arc- sec/century)	Cause
5025.6	Coordinate (due to precession of equinoxes)
531.4	Gravitational tugs of the other planets
0.0254	Oblateness of the sun (quadrupole moment)
42.98±0.04	General relativity
5600.0	Total
5599.7	Observed

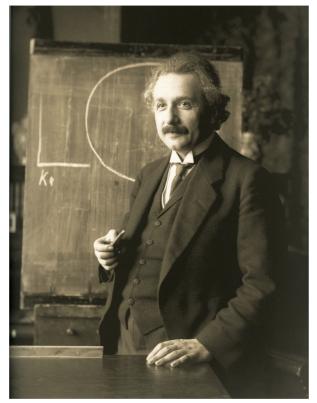
discrepancy recognized since 1859

Known physics

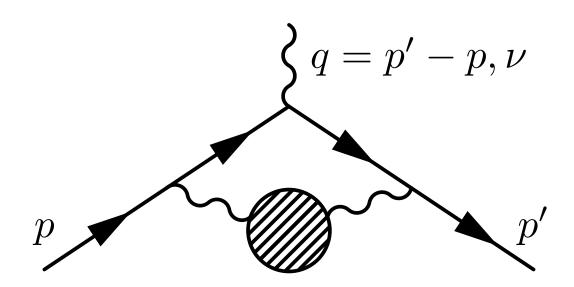
1915 by-then New physics GR revolution

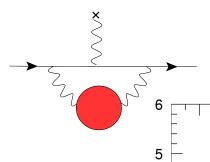
http://worldnpa.org/abstracts/abstracts_6066.pdf precession of perihelion





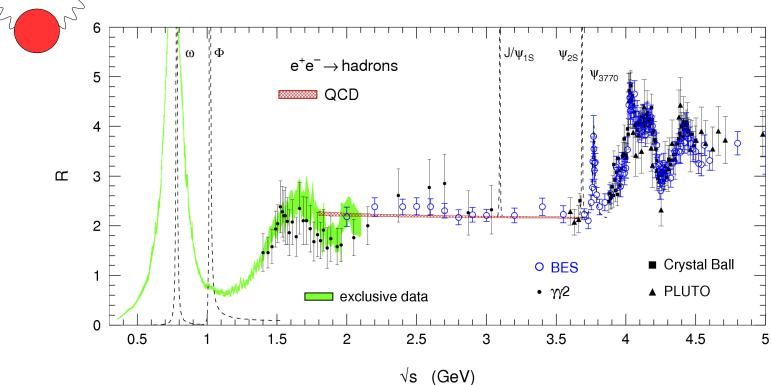
Hadronic Vacuum Polarization (HVP) contribution to g-2



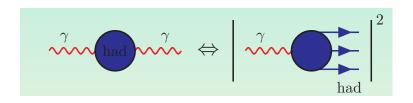


g-2 from R-ratio [Y. Maeda's talk]

[D. Nomura's talk]



From experimental e+ e- inclusive hadron decay cross section $\sigma_{\text{total}}(s)$ in time-like $s = q^2 > 0$, and dispersion relation, optical theorem



Dispersive methods 2018

[D. Nomura's talk]

- KNT18 (PRD97,114025, arXiv:1802.02995)
- DHMZ17 (Eur. Phys. J. C77:827)

Channel This work (KNT18)		DHMZ17 [78]	Difference		
Data based channels $(\sqrt{s} \le 1.8 \text{ GeV})$					
$\pi^0 \gamma (\text{data} + \text{ChPT})$	4.58 ± 0.10	4.29 ± 0.10	0.29		
$\pi^+\pi^- (data + ChPT)$	503.74 ± 1.96	507.14 ± 2.58	-3.40		
$\pi^+\pi^-\pi^0 \text{ (data + ChPT)}$	47.70 ± 0.89	46.20 ± 1.45	1.50		
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	13.99 ± 0.19	13.68 ± 0.31	0.31		

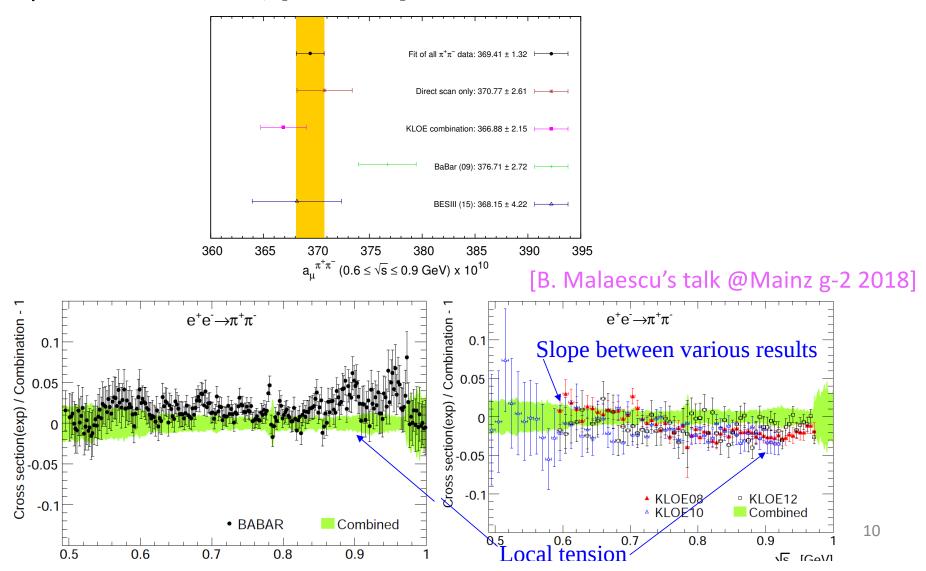
• • •

Total	693.3 ± 2.5	693.1 ± 3.4	0.2

- Very small error, KNT18: 2.5 x10⁻¹⁰ [0.37%] and DHMZ17 3.4 x10⁻¹⁰ [0.49%]
- Good agreement for total, individual channels have a tention.
- Difference in how to combine experiments and energy bins, correlations among them

Dispersive method status

BaBar and KLOE 2π contribution differ ~ 10(4) x 10^{-10} compared with quoted uncertainties, {2.5 or 3.4} x 10^{-10}



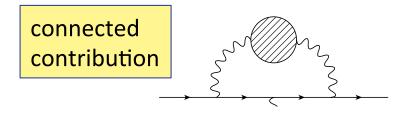
HVP from Lattice

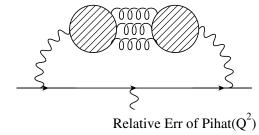
- Analytically continue to Euclidean/space-like momentum $K^2 = -q^2 > 0$
- Vector current 2pt function

$$a_{\mu} = \frac{g-2}{2} = \left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} dK^{2} f(K^{2}) \hat{\Pi}(K^{2}) \qquad \Pi^{\mu\nu}(q) = \int d^{4}x e^{iqx} \langle J^{\mu}(x) J^{\nu}(0) \rangle$$

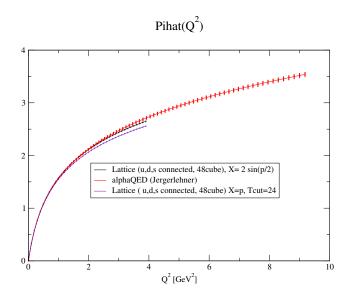
$$\Pi^{\mu\nu}(q) = \int d^4x e^{iqx} \langle J^{\mu}(x)J^{\nu}(0) \rangle$$

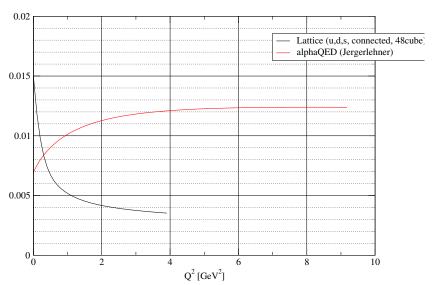
Low Q2, or long distance, part of Π (Q2) is relevant for g-2





disconnected contribution





Euclidean Time Momentum Representation

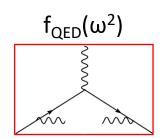
[Bernecker Meyer 2011, Feng et al. 2013]

In Euclidean space-time, project verctor 2 pt to zero spacial momentum, $\vec{p}=0$:

$$C(t) = \frac{1}{3} \sum_{x,i} \langle j_i(x) j_i(0) \rangle$$

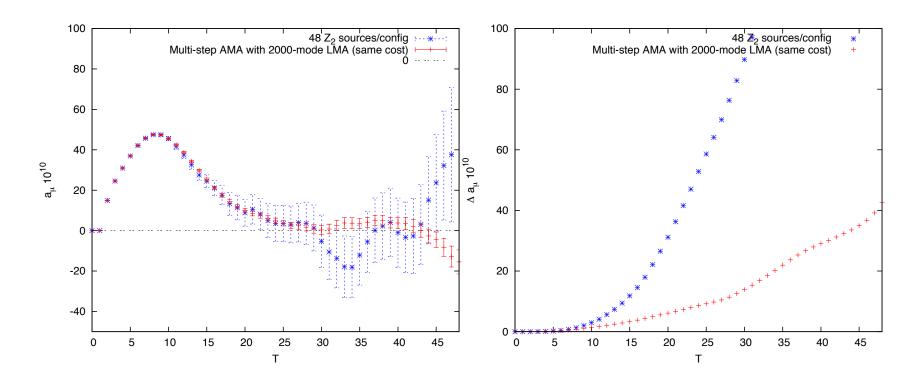
g-2 HVP contribution is

$$\begin{split} a_{\mu}^{HVP} &= \sum_t w(t)C(t)\\ w(t) &= 2\int_0^{\infty} \frac{d\omega}{\omega} f_{\rm QED}(\omega^2) \left[\frac{\cos\omega t - 1}{\omega^2} + \frac{t^2}{2}\right]\\ \text{w(t)} &\sim \mathsf{t}^4 \end{split}$$



- Subtraction $\Pi(0)$ is performed. Noise/Signal $\sim e^{(E_{\pi\pi}-m_\pi)t}$, is improved [Lehner et al. 2015] .
- Corresponding $\hat{\Pi}(Q^2)$ has exponentially small volume error [Portelli et al. 2016] . w(t) includes the continuum QED part of the diagram

DWF light HVP [2016 Christoph Lehner]

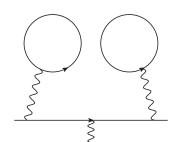


120 conf (a=0.11fm), 80 conf (a=0.086fm) physical point Nf=2+1 Mobius DWF 4D full volume LMA with 2,000 eigen vector (of e/o preconditioned zMobius D+D) EV compression (1/10 memory) using local coherence [C. Lehner Lat2017 Poster] In addition, 50 sloppy / conf via multi-level AMA

more than x 1,000 speed up compared to simple CG

disconnected quark loop contribution

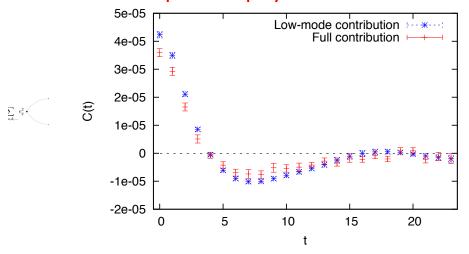
- [C. Lehner et al. (RBC/UKQCD 2015, arXiv:1512.09054, PRL)]
- Very challenging calculation due to statistical noise
- Small contribution, vanishes in SU(3) limit,Qu+Qd+Qs = 0

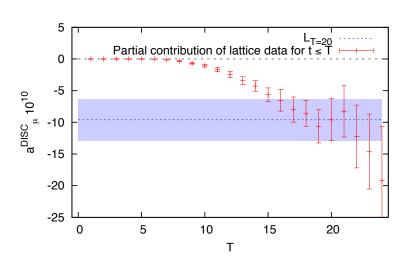


- Use low mode of quark propagator, treat it exactly (all-to-all propagator with sparse random source)
- First non-zero signal

$$a_{\mu}^{\mathrm{HVP\ (LO)\ DISC}} = -9.6(3.3)_{\mathrm{stat}}(2.3)_{\mathrm{sys}} \times 10^{-10}$$

Sensitive to m_{π} crucial to compute at physical mass

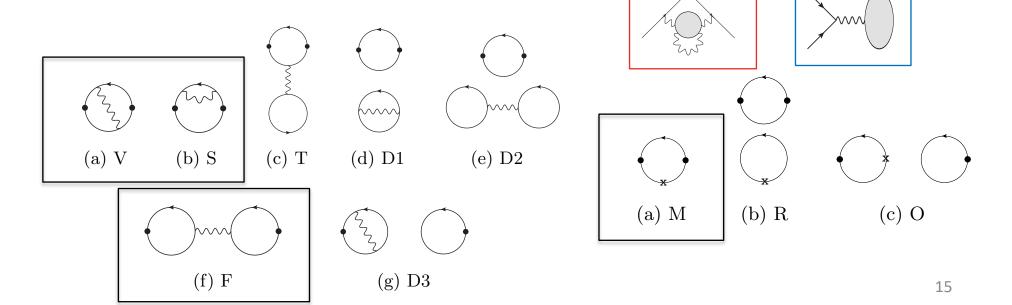




HVP QED+ strong IB corrections

- HVP is computed so far at Iso-symmetric quark mass, needs to compute isospin breaking corrections: Qu, Qd, mu-md ≠0
- u,d,s quark mass and lattice spacing are re-tuned using {charge,neutral} x{pion,kaon} and (Omega baryon masses)
- For now, V, S, F, M are computed: assumes EM and IB of sea quark and also shift to lattice spacing is small (correction to disconnected diagram)

 Point-source method: stochastically sample pair of 2 EM vertices a la important sampling with exact photon

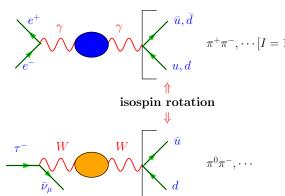


Tau input for [T. Konno's talk] [Y. Maekawa's talk] HVP IB+QED corrections

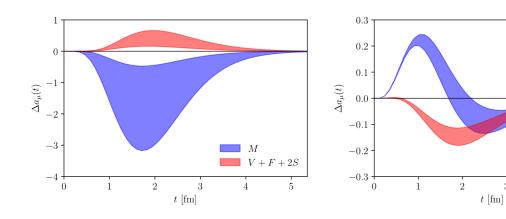
Could also compute the difference IB correction of

$$\Delta a_{\mu} = a_{\mu}(e+e-) - a_{\mu}(\tau)$$

[M. Bruno et al, arXiv:1811.00508]

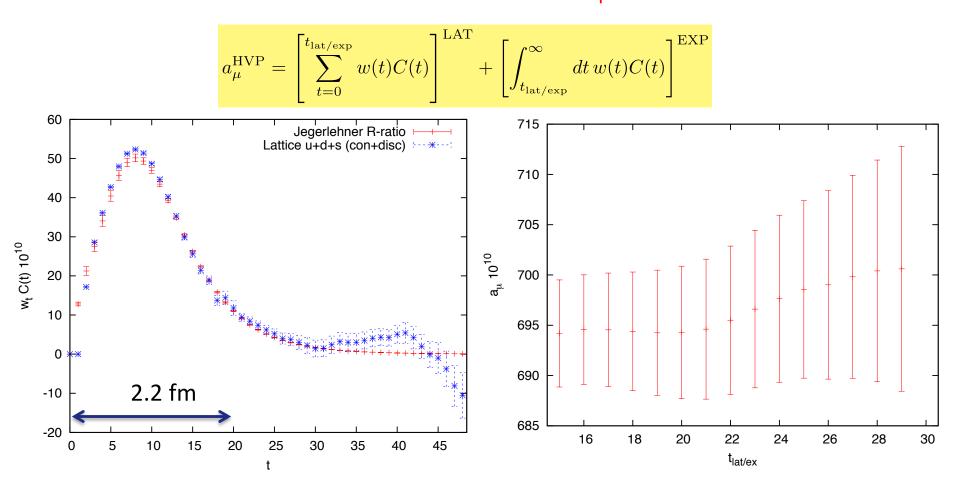


 I=0 to I=1 contribution from Strong IB+EM effect (left), I=1 contribution EM effects (right)



Interplay between Lattice and Experiment

- Check consistency between Lattice and R-ratio
- Short distance from Lattice, Long distance from R-ratio: error already 0.5 - 1.2% around t_{lat/exp} = 2fm



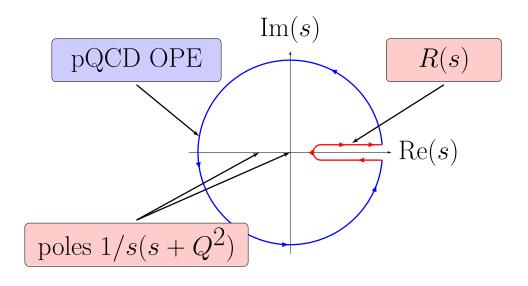
Euclidean time correlation from e^+e^- R(s) data

From e^+e^- R(s) ratio, using disparsive relation, zero-spacial momentum projected Euclidean correlation function C(t) is obtained

$$\hat{\Pi}(Q^2) = Q^2 \int_0^\infty ds \frac{R(s)}{s(s+Q^2)} \qquad \text{Lattice can compute Integral of Inclusive cross sections accurately}$$

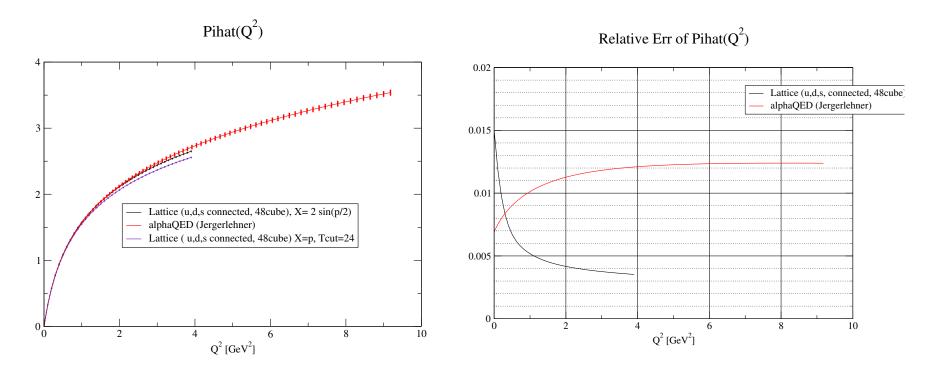
$$C^{\text{R-ratio}}(t) = \frac{1}{12\pi^2} \int_0^\infty \frac{d\omega}{2\pi} \hat{\Pi}(\omega^2) e^{i\omega t} = \frac{1}{12\pi^2} \int_0^\infty ds \sqrt{s} R(s) e^{-\sqrt{s}t}$$

- C(t) or w(t)C(t) are directly comparable to Lattice results with the proper limits $(m_q \to m_q^{\text{phys}}, a \to 0, V \to \infty)$, QED ...)
- Lattice: long distance has large statistical noise, (short distance: discretization error, removed by $a \rightarrow 0$ and/or pQCD)
- R-ratio: short distance has larger error



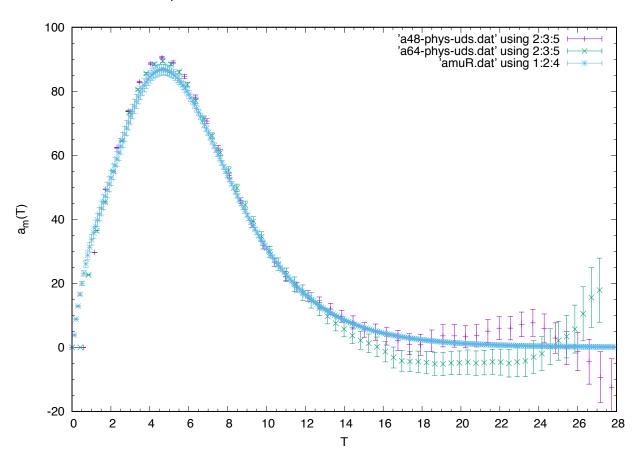
$$\hat{\Pi}(Q^2) = Q^2 \int_0^\infty ds \frac{R(s)}{s(s+Q^2)}$$
 (1/ $a=1.78$ GeV,

Relative statistical error)



Comparison of R-ratio and Lattice [F. Jegerlehner alphaQED 2016]

 Covariance matrix among energy bin in R-ratio is not available, assumes 100% correlated



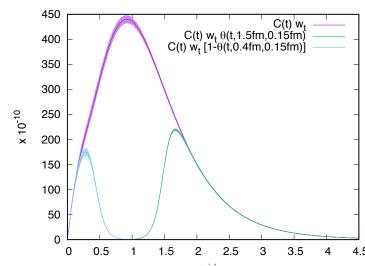
Combine R-ratio and Lattice [Christoph Lehner et al PRL18]

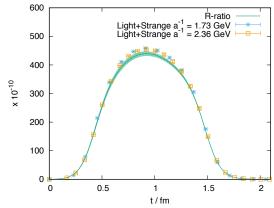
 Use short and long distance from R-ratio using smearing function, and mid-distance from lattice

$$\Theta(t,\mu,\sigma) \equiv \left[1 + \tanh\left[(t-\mu)/\sigma\right]\right]/2$$

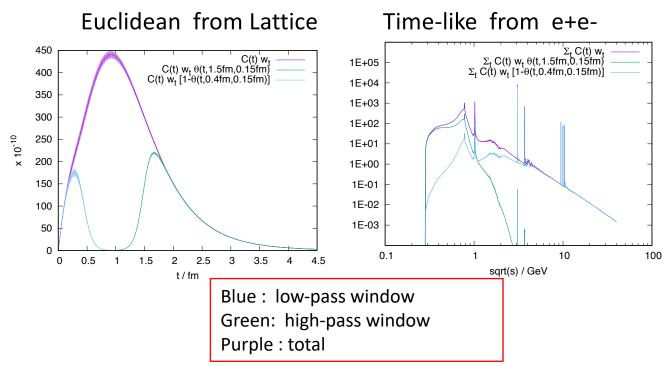
$$a_{\mu} = \sum_t w_t \mathcal{C}(t) \equiv a_{\mu}^{\mathrm{SD}} + a_{\mu}^{\mathrm{W}} + a_{\mu}^{\mathrm{LD}}$$

$$egin{aligned} & a_{\mu}^{\mathrm{SD}} = \sum_t \mathcal{C}(t) w_t [1 - \Theta(t, t_0, \Delta)] \,, \ & a_{\mu}^{\mathrm{W}} = \sum_t \mathcal{C}(t) w_t [\Theta(t, t_0, \Delta) - \Theta(t, t_1, \Delta)] \,, \ & a_{\mu}^{\mathrm{LD}} = \sum_t \mathcal{C}(t) w_t \Theta(t, t_1, \Delta) \end{aligned}$$





How does this translate to the time-like region?

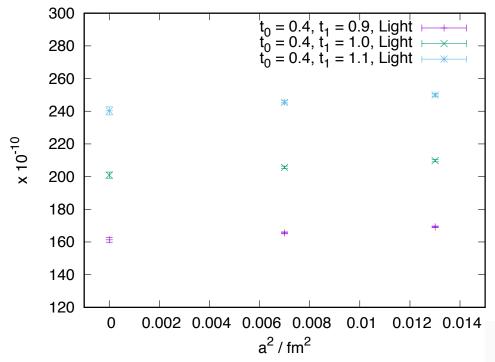


Most of $\pi\pi$ peak is captured by window from $t_0=0.4$ fm to $t_1=1.5$ fm, so replacing this region with lattice data reduces the dependence on

BaBar versus KLOE data sets.

Continuum limit of a^W

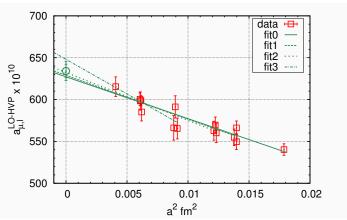
Continuum limit of $a_{\mu}^{
m W}$ from our lattice data; below $t_0=0.4$ fm and $\Delta=0.15$ fm



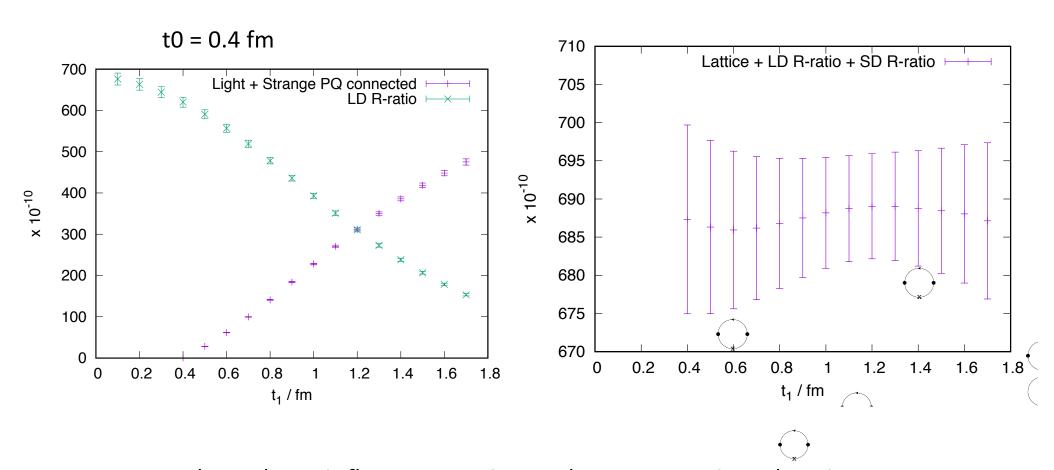
RBC/UKQCD [C. Lehner Lat17]

Continuum extrapolation is mild

c.f BMWc [K. Miura Lat17]



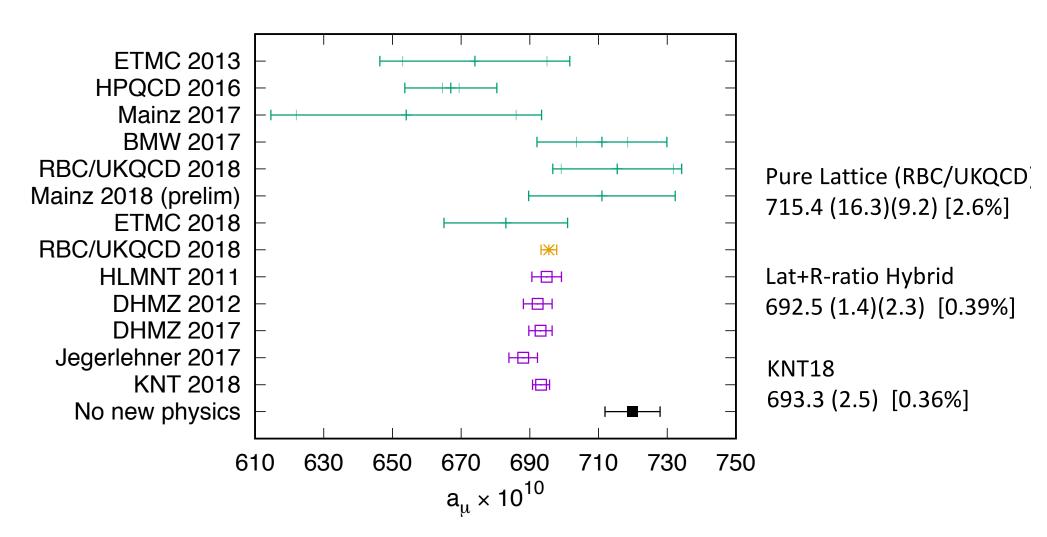
R-ratio + Lattice



t1 dependence is flat => a consistency between R-ratio and Lattice t1 = 1.2 fm, R-ratio : Lattice = 50:50

t1=1.2 fm current error (note 100% correlation in R-ratio) is minimum

HVP results



- Significant improvements is in progress for statistical error using 2π and 4π (!) states in addition to EM current (GEVP, GS-parametrization)
- Checking finite volume and discretization error as well as Isospin V effects

Example error budget from RBC/UKQCD 2018 (Fred's alphaQED17 results used for window result)

Window t=[0.4, 1 fm]

Pure Lattice

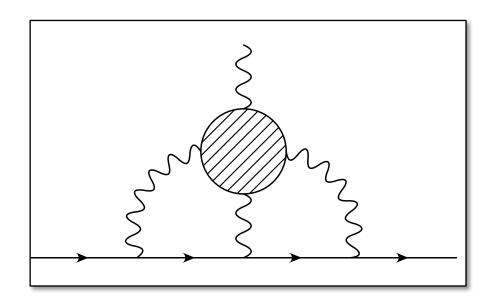
$a_{\mu}^{\text{ud, conn, isospin}}$	$202.9(1.4)_{\rm S}(0.2)_{\rm C}(0.1)_{\rm V}(0.2)_{\rm A}(0.2)_{\rm Z}$	$649.7(14.2)_{S}(2.8)_{C}(3.7)_{V}(1.5)_{A}(0.4)_{Z}(0.1)_{E48}(0.1)_{E64}$
$a_{\cdot \cdot}^{s, \text{ conn, isospin}}$	$27.0(0.2)_{\mathrm{S}}(0.0)_{\mathrm{C}}(0.1)_{\mathrm{A}}(0.0)_{\mathrm{Z}}$	$53.2(0.4)_{ m S}(0.0)_{ m C}(0.3)_{ m A}(0.0)_{ m Z}$
$a_{\mu}^{c, \text{ conn, isospin}}$	$3.0(0.0)_{\mathrm{S}}(0.1)_{\mathrm{C}}(0.0)_{\mathrm{Z}}(0.0)_{\mathrm{M}}$	$14.3(0.0)_{ m S}(0.7)_{ m C}(0.1)_{ m Z}(0.0)_{ m M}$
$a_{\mu}^{\text{uds, disc, isospin}}$	$-1.0(0.1)_{ m S}(0.0)_{ m C}(0.0)_{ m V}(0.0)_{ m A}(0.0)_{ m Z}$	$-11.2(3.3)_{ m S}(0.4)_{ m V}(2.3)_{ m L}$
$a_{\mu}^{\text{QED, conn}}$	$0.2(0.2)_{\mathrm{S}}(0.0)_{\mathrm{C}}(0.0)_{\mathrm{V}}(0.0)_{\mathrm{A}}(0.0)_{\mathrm{Z}}(0.0)_{\mathrm{E}}$	$5.9(5.7)_{\mathrm{S}}(0.3)_{\mathrm{C}}(1.2)_{\mathrm{V}}(0.0)_{\mathrm{A}}(0.0)_{\mathrm{Z}}(1.1)_{\mathrm{E}}$
$a_{\mu}^{\text{QED, disc}}$	$-0.2(0.1)_{ m S}(0.0)_{ m C}(0.0)_{ m V}(0.0)_{ m A}(0.0)_{ m Z}(0.0)_{ m E}$	$-6.9(2.1)_{\mathrm{S}}(0.4)_{\mathrm{C}}(1.4)_{\mathrm{V}}(0.0)_{\mathrm{A}}(0.0)_{\mathrm{Z}}(1.3)_{\mathrm{E}}$
$a_{\mu}^{ ext{QED, disc, isospin}}$ $a_{\mu}^{ ext{QED, conn}}$ $a_{\mu}^{ ext{QED, disc}}$ $a_{\mu}^{ ext{QED, disc}}$ $a_{\mu}^{ ext{SIB}}$	$0.1(0.2)_{\rm S}(0.0)_{\rm C}(0.2)_{\rm V}(0.0)_{\rm A}(0.0)_{\rm Z}(0.0)_{\rm E48}$	$10.6(4.3)_{\rm S}(0.6)_{\rm C}(6.6)_{\rm V}(0.1)_{\rm A}(0.0)_{\rm Z}(1.3)_{\rm E48}$
$a_{\mu}^{\text{udsc, isospin}}$	$231.9(1.4)_{\rm S}(0.2)_{\rm C}(0.1)_{\rm V}(0.3)_{\rm A}(0.2)_{\rm Z}(0.0)_{\rm M}$	$705.9(14.6)_{\rm S}(2.9)_{\rm C}(3.7)_{\rm V}(1.8)_{\rm A}(0.4)_{\rm Z}(2.3)_{\rm L}(0.1)_{\rm E48}$
		$(0.1)_{ m E64}(0.0)_{ m M}$
$a_{\mu}^{\text{QED, SIB}}$	$0.1(0.3)_{\rm S}(0.0)_{\rm C}(0.2)_{\rm V}(0.0)_{\rm A}(0.0)_{\rm Z}(0.0)_{\rm E}(0.0)_{\rm E48}$	$9.5(7.4)_{\rm S}(0.7)_{\rm C}(6.9)_{\rm V}(0.1)_{\rm A}(0.0)_{\rm Z}(1.7)_{\rm E}(1.3)_{\rm E48}$
$a_{\mu}^{ ext{QED, SIB}} \ a_{\mu}^{ ext{R-ratio}}$	$460.4(0.7)_{RST}(2.1)_{RSY}$	
a_{μ}	$692.5(1.4)_{\rm S}(0.2)_{\rm C}(0.2)_{\rm V}(0.3)_{\rm A}(0.2)_{\rm Z}(0.0)_{\rm E}(0.0)_{\rm E48}$	$715.4(16.3)_{\rm S}(3.0)_{\rm C}(7.8)_{\rm V}(1.9)_{\rm A}(0.4)_{\rm Z}(1.7)_{\rm E}(2.3)_{\rm L}$
	$(0.0)_{\rm b}(0.1)_{\rm c}(0.0)_{\overline{\rm S}}(0.0)_{\overline{\rm Q}}(0.0)_{\rm M}(0.7)_{\rm RST}(2.1)_{\rm RSY}$	$(1.5)_{\mathrm{E}48}(0.1)_{\mathrm{E}64}(0.3)_{\mathrm{b}}(0.2)_{\mathrm{c}}(1.1)_{\overline{\mathrm{S}}}(0.3)_{\overline{\mathrm{Q}}}(0.0)_{\mathrm{M}}$

TABLE I. Individual and summed contributions to a_{μ} multiplied by 10^{10} . The left column lists results for the window method with $t_0 = 0.4$ fm and $t_1 = 1$ fm. The right column shows results for the pure first-principles lattice calculation. The respective uncertainties are defined in the main text.

For the pure lattice number the dominant errors are (S) statistics, (V) finite-volume errors, and (C) the continuum limit extrapolation uncertainty.

For the window method there are additional R-ratio systematic (RSY) and R-ratio statistical (RST) errors.

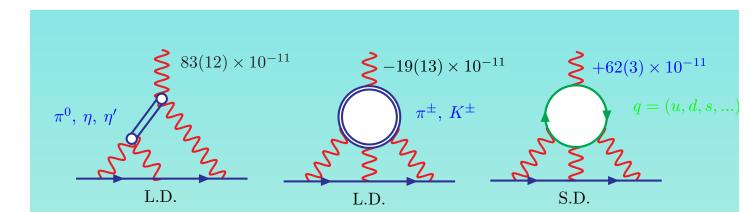
Hadronic Light-by-Light (HLbL) contributions



HLbL from Models

Model estimate with non-perturbative constraints at the chiral / low energy limits using anomaly: (9-12) x 10-10 with 25-40% uncertainty
SM
SM
(4.0)
(4.0)
10-10
10

$$a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = 28.8(6.3)_{\text{exp}}(4.9)_{\text{SM}} \times 10^{-10}$$
 [3.6 σ]



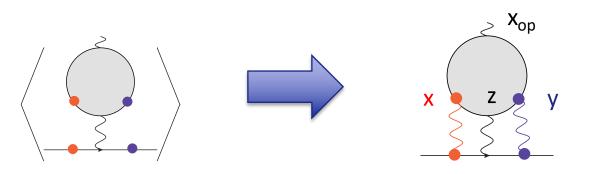
F. Jegerlehner , x 10¹¹

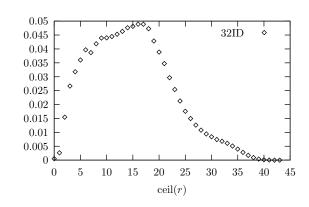
BPP	HKS	KN	MV	PdRV	N/JN
85±13	82.7±6.4	83±12	114±10	114±13	99±16
-19 ± 13	-4.5 ± 8.1	_	0±10	-19±19	-19±13
2.5 ± 1.0	1.7 ± 1.7	_	22 ± 5	15±10	22 ± 5
-6.8 ± 2.0	_	_	_	-7 ± 7	-7 ± 2
21 ± 3	9.7±11.1	-	-	2.3	21 ± 3
83±32	89.6±15.4	80±40	136±25	105±26	116±39
	85±13 -19±13 2.5±1.0 -6.8±2.0 21±3	85±13 82.7±6.4 -19±13 -4.5±8.1 2.5±1.0 1.7±1.7 -6.8±2.0 - 21±3 9.7±11.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Coordinate space Point photon method

[Luchang Jin et al. , PRD93, 014503 (2016)]

- Treat all 3 photon propagators exactly (3 analytical photons), which makes the quark loop and the lepton line connected:
 - disconnected problem in Lattice QED+QCD -> connected problem with analytic photon
- QED 2-loop in coordinate space. Stochastically sample, two of quark-photon vertex location x,y,z and x_{op} is summed over space-time exactly





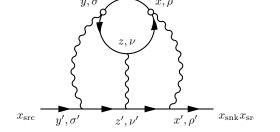
- Short separations, Min[|x-z|,|y-z|,|x-y|] < R ~ O(0.5) fm, which has a large contribution due to confinement, are summed for all pairs</p>
- longer separations, Min[|x-z|,|y-z|,|x-y|] >= R, are done stochastically with a probability shown above (Adaptive Monte Carlo sampling)

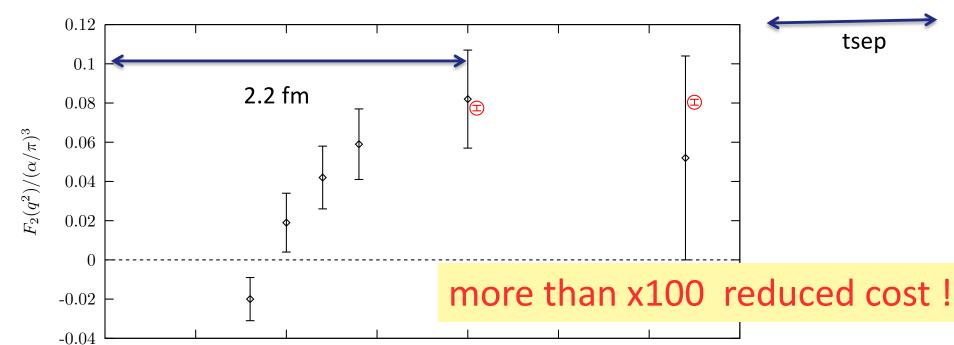
Dramatic Improvement!

Luchang Jin

a=0.11 fm, 24^3x64 (2.7 fm)³, m_{π} = 329 MeV, m_{u} =~ 190 MeV, e=1

$$\begin{array}{c} q = 2\pi/L \ N_{\rm prop} = 81000 \ \longmapsto \\ q = 0 \ N_{\rm prop} = 26568 \ \longmapsto \end{array}$$



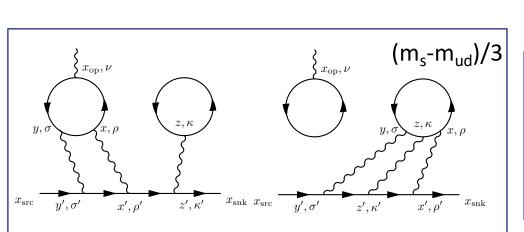


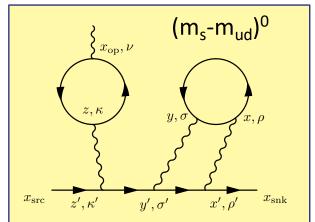
 t_{con}

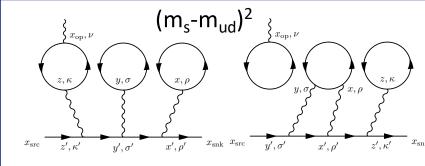
	vsep			
Method	$F_2/(\alpha/\pi)^3$	$N_{ m conf}$	$N_{ m prop}$	\sqrt{Var}
Conserved	0.0825(32)	12	$(118+128)\times2\times7$	0.65
Mom.	0.0804(15)	18	$(118+128)\times2\times3$	0.24

SU(3) hierarchies for d-HLbL

- At $m_s = m_{ud}$ limit, following type of disconnected HLbL diagrams survive $Q_u + Q_d + Q_s = 0$
- Physical point run using similar techniques to c-HLbL.
- other diagrams suppressed by $O(m_s-m_{ud})/3$ and $O((m_s-m_{ud})^2)$



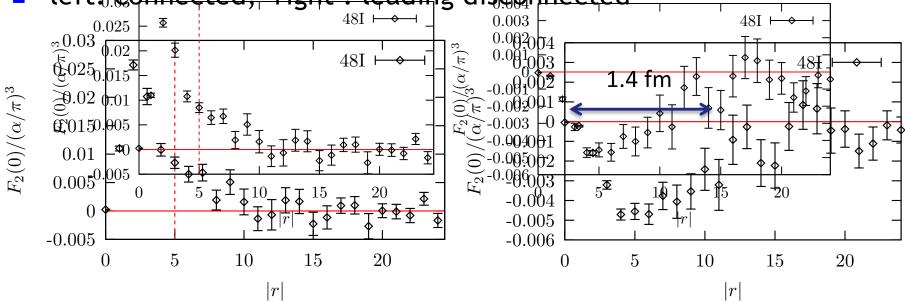




140 MeV Pion, connected and disconnected LbL results

[Luchang Jin et al. , Phys.Rev.Lett. 118 (2017) 022005]

left: Gonnected, right: leading disconnected



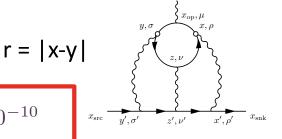
Using AMA with 2,000 zMobius low modes, AMA

(statistical error only)

$$\frac{g_{\mu} - 2}{2} \Big|_{\text{cHLbL}} = (0.0926 \pm 0.0077) \times \left(\frac{\alpha}{\pi}\right)^3 = (11.60 \pm 0.96) \times 10^{-10}$$

$$\frac{g_{\mu} - 2}{2} \Big|_{\text{dHLbL}} = (-0.0498 \pm 0.0064) \times \left(\frac{\alpha}{\pi}\right)^3 = (-6.25 \pm 0.80) \times 10^{-10}$$

$$\frac{g_{\mu} - 2}{2} \Big|_{\text{HLbL}} = (0.0427 \pm 0.0108) \times \left(\frac{\alpha}{\pi}\right)^3 = (5.35 \pm 1.35) \times 10^{-10}$$



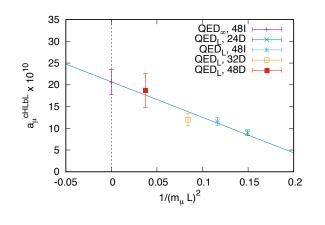
Lattice 2017 Updates from PRL (2017)

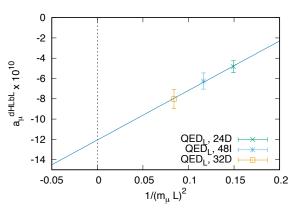
Discretization error

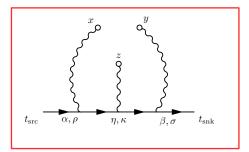
 \rightarrow a scaling study for 1/a = 2.7, 1.4, 1.0 GeV at physical quark mass for both connected and disconnected is being finalized

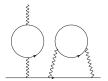
Finite volume

QED_L (photon/lepton in a box) [08 Hayakawa Uno] Infinite Volume and continuum lepton + photon diagrams









Summary

Lattice calculation for g-2 calculation is improved very rapidly

HVP

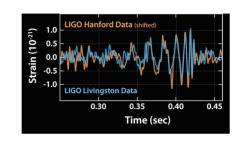
- New methods using low mode for connected at physical quark mass,
- disconnected quark loop at physical quark mass, QED and IB studies are included
- Combining with R-ratio experiment data for cross-check and improvement => 0.4 % error
- Eventually the window will be enlarged for a pure LQCD prediction (currently 2.6 % error)
- Significant improvements is in progress for statistical error using 2π and 4π (!) states in addition to EM current (GEVP, GS-parametrization)
- Checking finite volume and discretization error as well as Isospin V effects
- We could compute Inclusive hadron cross sections at Euclidean q² from the first principle Lattice QCD with Isospin breaking effects!

```
e+e- -> hadron
tau -> nu + hadrons
tau inclusive decay and |Vus| arXiv:1803.07228 (to appear in PRL)
```

HLbL

- computing connected and leading disconnected diagrams:
 -> 8 % stat error in connected, 13 % stat error in leading disconnected
- coordinate-space integral using analytic photon propagator with adaptive probability (point photon method), config-by-config conserved external current
- Improving statistics right now.
- Various size of Lattice ensemble / method for systematic error as well as higher disconnected diagram Comparing with Mainz group's results (for connected at heavy pion mass)
- Goal: HVP sub 1% (then 0.25%), HLbL 10% error

Can we see the next physics Revolution (c.f GW)?



Simulation details [RBC/UKQCD 2015]

two gauge field ensembles generated by RBC/UKQCD collaborations

Domain wall fermions: chiral symmetry at finite a

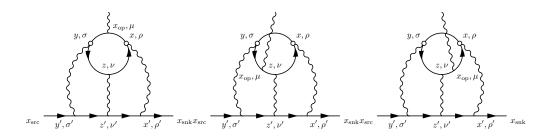
Iwasaki Gauge action (gluons)

- pion mass $m_\pi=139.2(2)$ and 139.3(3) MeV ($m_\pi L\lesssim 4$)
- lattice spacings a=0.114 and 0.086 fm
- lattice scale $a^{-1} = 1.730$ and 2.359 GeV
- lattice size L/a=48 and 64
- lattice volume $(5.476)^3$ and $(5.354)^3$ fm³

Use all-mode-average (AMA) [Blum et al 2012] and low-mode- averaging (LMA) [Giusti et al, 2004, Degrand et al 2005, Lehner 2016 for HVP] techniques for improved statistics by more than three orders of magnitudes compared to basic CG, and $\times 10$ smaller memory via multigrid-Lanczos [Lehner 2017] .

Conserved current & moment method

[conserved current method at finite q2] To tame UV divergence, one of quark-photon vertex (external current) is set to be conserved current (other three are local currents). All possible insertion are made to realize conservation of external currents config-by-config.



■ [moment method, $q2\rightarrow0$] By exploiting the translational covariance for fixed external momentum of lepton and external EM field, q>0 limit value is directly computed via the first moment of the relative coordinate, xop - (x+y)/2, one could show

$$\frac{\partial}{\partial q_i} \mathcal{M}_{\nu}(\vec{q})|_{\vec{q}=0} = i \sum_{x,y,z,x_{op}} (x_{op} - (x+y)/2)_i \times$$

to directly get $F_2(0)$ without extrapolation.

Form factor :
$$\Gamma_{\mu}(q) = \gamma_{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2 m_l} F_2(q^2)$$

Current conservation & subtractions

conservation => transverse tensor

$$\Pi^{\mu\nu}(q) = (\hat{q}^2 \delta^{\mu\nu} - \hat{q}^{\mu} \hat{q}^{\nu}) \Pi(\hat{q}^2)$$

- In infinite volume, q=0, $\Pi_{\mu\nu}(q)=0$
- For finite volume, $\Pi_{\mu\nu}(0)$ is exponentially small (L.Jin, use also in HLbL)

$$\int_{V} dx^{4} \langle V_{\mu}(x)\mathcal{O}(0)\rangle = \int_{V} dx^{4} \,\partial_{x} \left(x\langle V_{\mu}(x)\mathcal{O}(0)\rangle\right)$$
$$= \int_{\partial V} dx^{3} \,x\langle V_{\mu}(x)\mathcal{O}(0)\rangle \propto L^{4} \exp(-ML/2) \to 0$$

- e.g. DWF L=2, 3, 5 fm $\Pi_{\mu\nu}(0) = 8(3)e-4$, 2(13)e-5, -1(5)e-8
- Subtract $\Pi_{\mu\nu}(0)$ alternates FVE, and reduce stat error "-1" subtraction trick:

$$\Pi^{\mu\nu}(q) - \Pi^{\mu\nu}(0) = \int d^4x (e^{iqx} - 1) \langle J^{\mu}(x) J^{\nu}(0) \rangle$$