タウ・レプトン物理研究センター研究発表会

Gauge－mediated supersymmetry breaking with generalized messenger sector at LHC

川瀬 英俊（名古屋大 E研 D 1 ）

JHEP 1001：027， 2010 ［arXiv：0910．5555［hep－ph］］共同研究者

前川 展祐（名古屋大）桜井一樹（Cambridge）

Outline

1. Introduction
2. Gauge-mediated SUSY breaking
3. $X+\bar{X}$ messenger scenario
4. $Q+\bar{Q}$ messenger scenario
5. Summary

1．Introduction

標準模型は正しいか？

不満な点

－Higgs 粒子質量への量子補正

$$
m_{h}^{2}=m_{h 0}^{2}+\delta m_{h}^{2} \quad \delta m_{h}^{2} \propto \Lambda^{2}
$$

\Rightarrow 不自然なパラメータ微調整が必要
－暗黒物質の候補の不在
\Rightarrow 標準模型を超える新しい物理が存在？

LHC 実験による発見に期待！

Supersymmetry（SUSY）

高エネルギーで boson と fermion の間の対称性が実現？
標準模型 \Rightarrow Minimal SUSY standard model（MSSM）
－quark，lepton \Leftrightarrow squark，slepton
－Higgs \Leftrightarrow higgsino
－gauge 場 \Leftrightarrow gaugino
Higgs 質量の二次発散は相殺！

Gauge coupling unification
\Rightarrow GUT の存在を示唆！

現実的な模型では SUSY は破れている必要がある
Soft SUSY breaking（二次発散を導かずに SUSY を破る）
$\mathcal{L}_{\text {soft }}=-\frac{1}{2}\left(M_{3} \tilde{G} \tilde{G}+M_{2} \tilde{W} \tilde{W}+M_{1} \tilde{B} \tilde{B}\right)+$ h．c．

$$
-\left(m_{Q}^{2}\right)_{i j} \tilde{Q}_{i}^{\dagger} \tilde{Q}_{j}+\cdots \quad \text { sfermion mass }
$$

$$
-m_{H_{u}}^{2} H_{u}^{*} H_{u}-m_{H_{d}}^{2} H_{d}^{*} H_{d}-\left(b H_{u} H_{d}+\text { h.c. }\right) \text { Higgs mass }
$$

bino \tilde{B} ，wino \tilde{W} ，higgsino \tilde{H} の質量固有状態
Neutralino：$\left(\tilde{B}, \tilde{W}^{3}, \tilde{H}_{d}^{0}, \tilde{H}_{u}^{0}\right) \Rightarrow\left(\tilde{\chi}_{1}^{0}, \tilde{\chi}_{2}^{0}, \tilde{\chi}_{3}^{0}, \tilde{\chi}_{4}^{0}\right)$
Chargino：$\left(\tilde{W}^{+}, \tilde{H}_{u}^{+}, \tilde{W}^{-}, \tilde{H}_{d}^{-}\right) \Rightarrow\left(\tilde{\chi}_{1}^{ \pm}, \tilde{\chi}_{2}^{ \pm}\right)$

2．Gauge－mediated SUSY breaking

$S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$ の量子数を持つ messenger 場を導入することでSUSY の破れを伝搬

$$
W=m_{\Phi} \Phi \bar{\Phi}+\theta^{2} F_{\Phi} \Phi \bar{\Phi} \quad(\Phi, \bar{\Phi}: \text { messenger 場 })
$$

Gaugino mass

$$
M_{a} \simeq n_{a}\left(\frac{\alpha_{a}}{4 \pi}\right) \frac{F_{\Phi}}{m_{\Phi}}
$$

Sfermion mass

$$
m_{\tilde{f}}^{2} \simeq \sum_{a=1}^{3} n_{a} C_{a}^{\tilde{f}}\left(\frac{\alpha_{a}}{4 \pi}\right)^{2} \frac{F_{\Phi}^{2}}{m_{\phi}^{2}}
$$

n_{a} ：Dynkin index $\quad\left(n_{a}=1\right.$ for $5+\overline{5}$ of $S U(5)$ GUT）

$$
\mathbf{5}=D(\mathbf{3}, \mathbf{1})_{-1 / 3}+\bar{L}(\mathbf{1}, \mathbf{2})_{1 / 2}, \quad \overline{\mathbf{5}}=\bar{D}(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3}+L(\mathbf{1}, \mathbf{2})_{-1 / 2}
$$

messenger を導入すると gauge coupling の
スケール依存性が変更を受ける

$$
\frac{d}{d \ln Q} \alpha_{a}^{-1}=-\frac{b_{a}}{2 \pi}+\mathcal{O}\left(\alpha^{2}\right) \quad \Rightarrow \quad b_{a}^{\prime}=b_{a}+n_{a}
$$

coupling unificationを損なわないためには $n_{1}=n_{2}=n_{3}$ であればよい
\Rightarrow GUT relation

$$
M_{1}\left(m_{Z}\right): M_{2}\left(m_{Z}\right): M_{3}\left(m_{Z}\right) \sim 1: 2: 6
$$

しかし $n_{1}=n_{2}=n_{3}$ が満たされない場合でも unification が実現している可能性はある！
（例：anomalous $U(1)$ GUT）
その場合には GUT relation は成り立っていない！

Typical multiplets in $S U(5)$ GUT

$\overline{5}=\bar{D}+L, \quad 10=Q+\bar{U}+\bar{E}, \quad 24=G+W+X+\bar{X}$

	$\left(S U(3)_{C}, S U(2)_{L}\right)_{U(1)_{Y}}$	n_{1}	n_{2}	n_{3}
$Q+\bar{Q}$	$(\mathbf{3}, \mathbf{2})_{1 / 6}+(\overline{\mathbf{3}}, \mathbf{2})_{-1 / 6}$	$1 / 5$	3	2
$U+\bar{U}$	$(\mathbf{3}, \mathbf{1})_{2 / 3}+(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3}$	$8 / 5$	0	1
$D+\bar{D}$	$(\mathbf{3}, \mathbf{1})_{-1 / 3}+(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3}$	$2 / 5$	0	1
$L+\bar{L}$	$(\mathbf{1}, \mathbf{2})_{-1 / 2}+(\mathbf{1}, \mathbf{2})_{1 / 2}$	$3 / 5$	1	0
$E+\bar{E}$	$(\mathbf{1}, \mathbf{1})_{-1}+(\mathbf{1}, \mathbf{1})_{1}$	$6 / 5$	0	0
G	$(\mathbf{8}, \mathbf{1})_{0}$	0	0	3
W	$(\mathbf{1}, \mathbf{3})_{0}$	0	2	0
$X+\bar{X}$	$(\mathbf{3}, \mathbf{2})_{-5 / 6}+(\overline{\mathbf{3}}, \mathbf{2})_{5 / 6}$	5	3	2

一組の messenger 場の寄与だけが主要な場合を考える
$\Rightarrow X+\bar{X}$ と $Q+\bar{Q}$ が messenger 場の候補

模型を LHC で確認するには？
SUSY＠LHC
－R－parity
（SM 粒子）\rightarrow（SM 粒子）
 （SUSY 粒子）\rightarrow－（SUSY 粒子）

MSSM で陽子崩壊を導く相互作用を禁止するために導入
\Rightarrow 最も軽い SUSY 粒子（LSP：Lightest SUSY Particle）は安定 LSP は dark matter の候補
GMSB model では典型的に gravitino \tilde{G} が LSP \Rightarrow GMSB では Next to LSP（NLSP）が重要！

3. $X+\bar{X}$ messenger scenario

$$
\begin{aligned}
n_{1} & =5, \quad n_{2}=3, \quad n_{3}=2 \\
M_{1}\left(m_{Z}\right) & : M_{2}\left(m_{Z}\right): M_{3}\left(m_{Z}\right) \sim 5: 6: 12
\end{aligned}
$$

\Rightarrow Mild hierarchy among gauginos is achieved.

Case 1．and Case 2.
Neutralino $\tilde{\chi}_{1}^{0}$ NLSP

Case 3.

Stau $\tilde{\tau}_{1}$ NLSP

具体的な model point

Case 1．$\Lambda_{\Phi}=60 \mathrm{TeV}, m_{\Phi}=1.0 \times 10^{14} \mathrm{GeV}$
Case 2．$\Lambda_{\Phi}=70 \mathrm{TeV}, m_{\Phi}=5.0 \times 10^{12} \mathrm{GeV}$
Case 3．$\Lambda_{\Phi}=70 \mathrm{TeV}, m_{\Phi}=1.0 \times 10^{10} \mathrm{GeV}$

今考えている model point では

NLSP は detector 内で崩壞しない！
$\Gamma\left(\mathrm{NLSP} \rightarrow \tilde{G}+\mathrm{SM}\right.$ 粒子）$\propto F_{\Phi}^{-2}$

Model Points

	Case 1	Case 2	Case 3
\tilde{g}	910	1049	1054
\tilde{u}_{L}	1017	1168	1163
\tilde{u}_{R}	946	1086	1089
\tilde{d}_{L}	1022	1173	1169
\tilde{d}_{R}	905	1047	1063
\tilde{b}_{1}	894	1036	1053
\tilde{b}_{2}	929	1073	1085
\tilde{t}_{1}	704	831	879
\tilde{t}_{2}	957	1097	1107
$\tilde{\nu}_{l}$	564	621	556
$\tilde{\nu}_{\tau}$	562	619	555
\tilde{e}_{L}	569	626	561
\tilde{e}_{R}	478	497	403
$\tilde{\tau}_{1}$	473	492	399
$\tilde{\tau}_{2}$	568	625	561
$\tilde{\chi}_{1}^{0}$	395	464	459
$\tilde{\chi}_{2}^{0}$	439	514	508
$\tilde{\chi}_{3}^{0}$	530	595	562
$\tilde{\chi}_{4}^{0}$	571	640	621
$\tilde{\chi}_{1}^{ \pm}$	433	506	496
$\tilde{\chi}_{2}^{ \pm}$	568	636	618
h^{0}	114	115	114
H^{0}	766	852	783
A^{0}	765	851	783
$H^{ \pm}$	770	856	787

Case 3．Stau（ $\tilde{\tau}_{1}$ ）NLSP

電荷を持つ $\tilde{\tau}_{1}$ が detector 内で崩壊しない場合 muon system を利用して測定が可能！

G．Polesello and A．Rimoldi，ATL－MUON－99－006
J．Ellis et al．，ATL－PHYS－PUB－2007－016

Stau（ $\tilde{\tau}_{1}$ ）identification

－High ionization rate
－Time－of－Flight（ToF）measurement $\tilde{\tau}_{1}$ の速度が測定できる

$$
m=\frac{p}{\beta \gamma} \quad \gamma=\left(1-\beta^{2}\right)^{-1 / 2}
$$

$$
m_{\tilde{\chi}_{1}^{0}} \simeq M_{1}, m_{\tilde{\chi}_{2}^{0}} \simeq M_{2} \text { の測定 }
$$

$$
\begin{aligned}
& \tilde{\chi}_{1,2}^{0}<{ }_{\tilde{l}_{R}}^{l_{n}}{ }_{\tilde{\tau}_{1}}^{l_{f}} \Rightarrow m_{\tilde{\chi}_{R}^{0}}=p_{\tilde{\tau}_{1}}+p_{\tau}+p_{l_{f}} \simeq p_{\tilde{\tau}_{1}} \\
&\left.\simeq p_{\tilde{\tau}_{1}}+p_{l_{n}}\right)^{2}
\end{aligned}
$$

$m_{\tilde{g}}$ の測定

LHC における main production process は $p p \rightarrow \tilde{g} \tilde{g}, \tilde{q} \tilde{g}$ ，$\tilde{q} \tilde{q}$
Hemisphere method
G．L．Bayatian et al．

$\Rightarrow M_{1}: M_{2}: M_{3} \sim 5: 6: 12$ が確認できそう

Case 1．and 2．Neutralino（ $\tilde{\chi}_{1}^{0}$ ）NLSP

- NLSP $\tilde{\chi}_{1}^{0}$ の運動量は直接測定できない
- parton の initial momentum は不明
- 生成粒子のビーム軸に垂直な方向の全運動量はほぼ O

$$
\boldsymbol{p}_{T}^{\mathrm{mss}} \equiv-\sum \boldsymbol{p}_{T}^{\mathrm{vis}}=\boldsymbol{p}_{T}^{\mathrm{NLSP}(1)}+\boldsymbol{p}_{T}^{\mathrm{NLSP}(2)}
$$

標準模型の事象に対するカット
－$p_{T}^{(1)}>100 \mathrm{GeV}$ and $p_{T}^{(2,3,4)}>50 \mathrm{GeV}$
－$M_{\text {eff }} \equiv p_{T}^{(1)}+p_{T}^{(2)}+p_{T}^{(3)}+p_{T}^{(4)}+E_{T}^{\text {miss }}>400 \mathrm{GeV}$
－$E_{T}^{\text {miss }}>\max \left\{100 \mathrm{GeV}, 0.2 M_{\text {eff }}\right\}$
－ 2 isolated leptons with $p_{T}^{e}>20 \mathrm{GeV}$ and $p_{T}^{\mu}>5 \mathrm{GeV}$

1）Kinematical endpoint measurement

Case 1． 3 体崩壊

Case 2． 2 体崩壊

Dilepton invariant mass

$$
m_{l l}^{2} \equiv\left(p_{l_{1}}+p_{l_{2}}\right)^{2}
$$

Case 1.
$m_{l l}^{\max }=m_{\tilde{\chi}_{2}^{0}}-m_{\tilde{\chi}_{1}^{0}}$
Case 2.

$\left(m_{l l}^{\max }\right)^{2}=m_{\tilde{\chi}_{2}^{0}}^{2}\left(1-\frac{m_{\tilde{l}_{R}}^{2}}{m_{\tilde{\chi}_{2}^{0}}^{2}}\right)\left(1-\frac{m \tilde{\chi}_{1}^{2}}{m_{\tilde{l}_{R}}^{2}}\right)$

赤：$e^{+} e^{-}+\mu^{+} \mu^{-}$青：$e^{+} \mu^{-}+\mu^{+} e^{-}$

2）$m_{T 2}$ measurement

ニつの同質量粒子 Y が invisible 粒子 N と visible 粒子に崩壞

$$
\left.m_{T 2}\left(M_{\text {test }}\right) \equiv \min _{\boldsymbol{p}_{T}^{\text {miss }}=\boldsymbol{p}_{T}^{\chi(1)}+\boldsymbol{p}_{T}^{\chi(2)}}\left[\max \left\{m_{T}^{(1)}, m_{T}^{(2)}\right)\right\}\right]
$$

$$
m_{T}^{2}\left(\vec{p}_{T}^{\text {vis }}, \vec{p}_{T}^{\chi}\right) \equiv\left(\vec{p}_{T}^{\text {vis }}+\vec{p}_{T}^{\chi}\right)^{2}
$$

$$
=m_{\mathrm{vis}}^{2}+M_{\mathrm{test}}^{2}+2\left(E_{T}^{\mathrm{vis}} \cdot E_{T}^{\chi}-\boldsymbol{p}_{T}^{\mathrm{vis}} \cdot \boldsymbol{p}_{T}^{\chi}\right)
$$

$$
\vec{p}_{T} \equiv\left(E_{T}, \boldsymbol{p}_{T}\right), \quad E_{T} \equiv \sqrt{\left|\boldsymbol{p}_{T}\right|^{2}+m^{2}}
$$

$$
p p \rightarrow \tilde{q}_{R} \tilde{q}_{R} \rightarrow \tilde{\chi}_{1}^{0} q \tilde{\chi}_{1}^{0} q
$$

$$
m_{T 2}^{\max }(0)=\frac{m_{\tilde{q}}^{2}-m_{\tilde{\chi}_{1}^{0}}^{2}}{m_{\tilde{q}}}
$$

GUT relation が満たされる場合との区別 mSUGRA
同様な $m_{l l}$ 分布を与えるパラメータ

$$
\begin{aligned}
& m_{1 / 2}=150 \mathrm{GeV}, m_{0}=750 \mathrm{GeV} \\
& A_{0}=-100 \mathrm{GeV}, \tan \beta=10, \operatorname{sgn}(\mu)=+1
\end{aligned}
$$

GUT relation $M_{1}: M_{2}: M_{3} \sim 1: 2: 6$ が成り立つため $m_{l l}^{\max }$ が小さいとき gluino が軽いはず

$m_{T 2}^{m a x}$ で color を持つ粒子の質量スケールは見える
Case 1 と Case 2 の区別にはさらに詳細な測定が必要

4．$Q+\bar{Q}$ messenger scenario

$$
\begin{gathered}
n_{1}=1 / 5, \quad n_{2}=3, \quad n_{3}=2 \\
M_{1}\left(m_{Z}\right): M_{2}\left(m_{Z}\right): M_{3}\left(m_{Z}\right) \sim 1: 30: 60
\end{gathered}
$$

$\Rightarrow U(1)_{Y}$ charge しか持たない SUSY 粒子が非常に軽い

1）Endpoint measurement

$$
\begin{aligned}
& \tilde{q} L_{\tilde{\chi}_{2}^{0}}^{q} L_{\tilde{l}_{R}}^{l_{n}} L_{\tilde{\chi}_{1}^{0}}^{l_{f}} \\
& \left(m_{l l}^{\max }\right)^{2}=m_{\tilde{\chi}_{2}^{0}}^{2}\left(1-\frac{m_{\tilde{l}_{R}}^{2}}{m_{\tilde{\chi}_{2}^{0}}^{2}}\right)\left(1-\frac{m_{\tilde{\chi}_{1}^{0}}^{2}}{m_{\tilde{l}_{R}}^{2}}\right)
\end{aligned}
$$

$$
\frac{m_{\tilde{\chi}_{2}^{0}}^{2}}{m_{\tilde{\chi}_{1}^{0}}}>\frac{m_{\tilde{\chi}_{2}^{0}}}{m_{\tilde{l}_{R}}}>\frac{m_{\tilde{\chi}_{2}^{0}}^{2}-m_{\tilde{l}_{R}}^{2}}{m_{\tilde{l}_{R}}}=\frac{\left(m_{l l}^{\max }\right)^{2}}{m_{T 2}^{(l) \max }(0)} \sim 2.8 \mathrm{TeV}
$$

$$
M_{1} \ll M_{2} \text { が確認可能! }
$$

5．Summary

－GMSB model でこれまで主に考えられて来たものは $S U(5)$ sym．を尊重する messnger を用いたものだった
－しかし例えば anomalous $U(1)$ GUT の枠内では異なる n_{a} を与える messenger による模型もありえる
－$X+\bar{X}$ messenger の場合，
bino と wino の間の mass splitting は小さい
－$Q+\bar{Q}$ messenger の場合， bino と右巻き slepton が他の粒子に比べて極端に軽い
－これらの特徴が LHC 実験で検証できる可能性は十分ある

