CKM and Wilson Coefficients Fits

Ryosuke Itoh KEK

BNM2006-II Workshop

Dec 18-19, NWU

R.Itoh@BNM2006-II

1

Outline

Introduction
 Inputs to CKM fit
 Standard model fit
 Fit with New Physics effect
 Status of Wilson Coeff. fit
 Summary and Prospects

1. Introduction

5. Summary

shown@1st BNM

- The CKM fit becomes an important tool at SuperKEKB for the search of New Physics effect.
- O(10) improvement in the $\rho-\eta$ constraint with 50/ab is shown to be a sensitive prove to NP independently of theoretical models.
- Improvements in theoretical uncertainties is essential to go further in the search of NP.
- More to come by next WS.
 - ✓* Finalize inputs to CKM fit and update ρ−η constraint from LoI.
 ▲* Global fit to radiative decay measurements for the determination of Wilson Coefficents with NP effect.
- More considerations are necessary on
 - ▲* Treatment of radiative/leptonic decays in NP fit
 - ×* Inclusion of sin2 ϕ_1 (b \rightarrow s) and other NP sensitive meas.

2. Inputs to CKM fit

1. Experimental measurements a) SuperKEKB measurements

- measurements with B_d decays only

V_{ub}, sin2 ϕ_1 (J/ ψ K⁰), ϕ_2 , ϕ_3 , Δm_d, Br(B→τν), Br(ρ/ωγ)/Br(K*γ) b) LHC(b) measurements

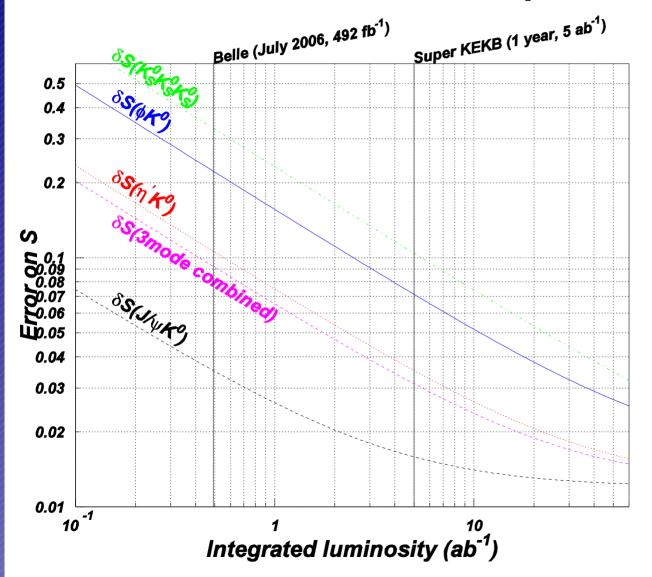
- measurements with B decays

 $\Delta m_{\rm e}$ - LHCb expectation for SuperB fits

- possibility to include other measurements (ex. ϕ_3), but not taken in the fits

c) Kaon sector measurements

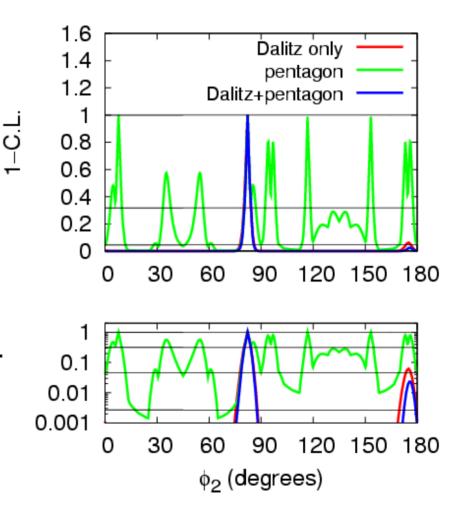
current best value is used in all fits


2. Theoretical inputs Decay constants, etc.: mostly relies on LQCD calculations → conservative assumption : no improvements from current values.

Е<mark>к</mark>

Error on *S* at Super KEKB

sin2 ϕ_1 error 0.016@5ab⁻¹ 0.012@50ab⁻¹


limited by vertexing systematic error

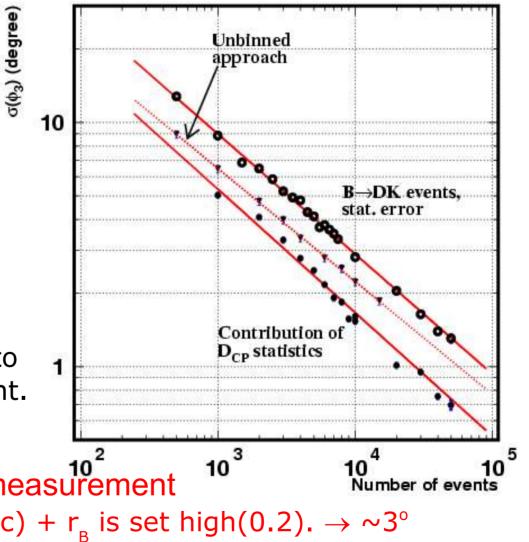
Kusaka@BNM2006

Expectation with 50/ab data $(B \rightarrow \rho \pi)$

- Dalitz plot only
 - Removes the discrete ambiguities by 90% C.L. (Dependent on input.)
 - Error of ϕ_2 : ~2°
- Dalitz + pentagon
 - Removes the discrete ambiguities by 95.5% C.L.
 - Error of ϕ_2 : ~2°

Krokovny@BNM2006

Model-independent Approach

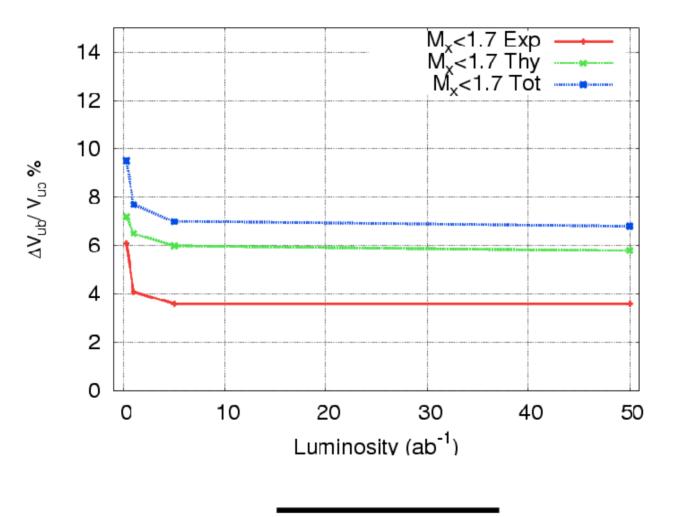

A.Giri, Yu. Grossman, A. Soffer, J. Zupan, PRD 68, 054018 (2003)

50 ab^{-1} at SuperB factory should be enough for model-independent γ/Φ_3 Measurement with accuracy below 2°

~10 fb⁻¹ at $\Psi(3770)$ needed to accompany this measurement.

Systematic error in $\psi(3770)$ measurement ¹⁰ ¹⁰ ¹⁰ ^{Number} may limit the accuracy(CLEO-c) + r_R is set high(0.2). $\rightarrow \sim 3^{\circ}$

A.Bondar, A.Poluektov hep-ph/0510246



M_x Analysis : Total Error projections

BNM Tsukuba (KEK) Sep 13-14 2006

Antonio Limosani KEK

Slide 13

) Br(B→τν) Constraints at Super-B

• Br($B \rightarrow \tau v$) measurement :

Further accumulation of luminosity helps to reduce both statistical and systematic errors

- Some of the major systematic errors come from limited statistics of the control sample

 $Br \propto \left| V_{ub} \right|^2 f_B^2$

- |V_{ub}| measurement:
 - < 5% in future is an realistic goal
- $f_{\rm B}$ from theory ~10% now \rightarrow 5% (?)

Assumption in the following plots

SuperKEKB measurements

	Center	σ(Belle)	σ(5/ab)	σ(50/ab)
V_{ub}	4.09×10 ⁻³	6.1%	3.6%	3.6%
$\Delta m_{_d}$	0.507	0.8% (sys.limit)	0.8%	0.8%
$sin2\phi_1$	0.642	5.5%	2.5%	1.9%
$\phi_2^{}$ (deg.)	93.0	11.8%[=11°]	6.5%[=6°]	2.1% [=2°]
$\phi_3^{}$ (deg.)	53.0	28.3%[=15°]	11.3%[=7°]	5.7% [=3°]
Β(Β→τν)	1.79×10⁴	36%	10%	3%
<mark>Β(Β→ρ/ωγ)</mark> * Β(Β→Κ*γ)	0.032	26%	9%	5%

 * Theoretically still controversial: Correlation btw ΔR and V_{td}/V_{ts}, Isospin ave. with ω... (refer to the talk given by P.Ball in WG3); Future errors are bold guestimations...
 Center values : current Belle's measurements

 \rightarrow What will we see if they are unchanged with 50/ab?

LHC(b) measurements

	Center	σ(current)	σ(5/ab)	σ(50/ab)
Δm_s	17.77	0.7%	0.06	6% *

*hep-ph/0003238

Kaon measurements

	Center	σ(current)	σ(5/ab)	ਰ(50/ab)
٤ _K	0.002221		3.6%	

Other measurements

	Center	σ(current)	σ(5/ab)	σ(50/ab)
V _{ud}	0.97377		0.02%	
V _{us}	0.2257		0.9%	
V _{cb}	0.417		0.16%	
m _c	1.24		8.2%	
m _t	162.3		1.4%	

M.Pierini@CKM2006

UT_{fit}

fit Estimated EXP errors 2015 (SuperB

Sin 2β 0.680 0.026 (4%) 0.005 α 105° 7° (7%) 1° γ 54° 20° (37%) 1°		
α 105° 7° (7%) 1° γ 54° 20° (37%) 1°	Error in 2015	
γ 54° 20° (37%) 1°	(0.7%)	
	(1%)	
	(2%)	
λ 0.2258 0.0014 (0.6%) 0.0008	8 (0.4%)	
Vcb (10 ⁻³) 41.7 2.2 (5%) 0.2 (0.5%)	
Vub (10 ⁻⁴) 36.4 2.0 (5%) 0.7	(2%)	
Δmd (ps⁻¹) 0.507 0.005 (1%) 0.002	(0.4%)	
∆ms (ps⁻¹) 18.06 0.12 (0.7%) 0.05	(0.2%)	
mt (GeV) 163.8 3.2 (2%) 1.5	(1%)	
BR(B→τν) (10 ⁻⁴) 0.83 0.48 (64%) 0.03	(4%)	
εK 2.280 0.013 (0.6%) 0.013	(0.6%)	
ASL(Bd) [10-3] - 0.7 5).1	

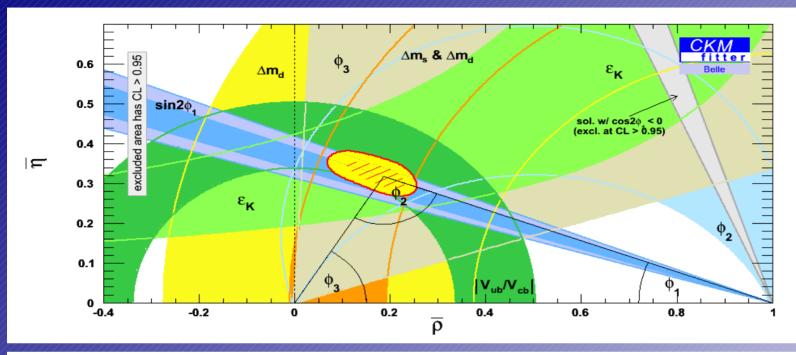
CKM IV Nagoya

11

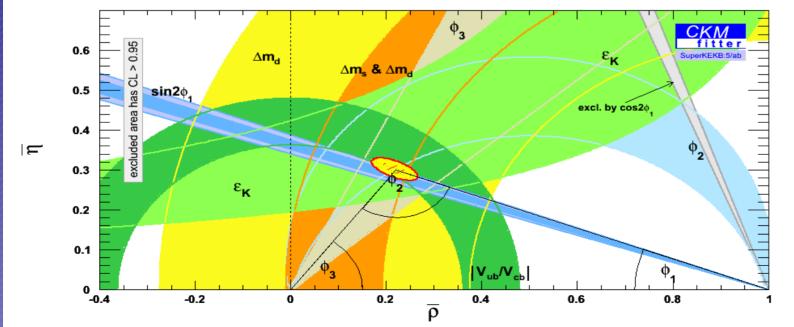
Can we be smart like this?

V _{ub}			Theore	tica	l parameters
	σ(Belle)	σ(5/ab)	σ(50/a	ab)	
V _{ub} th.	7.2%	6.0%	5.8%		
$\Delta m_{d}^{}, \Delta$.m _s , Br(B→τν)				
f _{Bs}	0.2365 ± (0.0315 ± 0.00	1		
Bs	1.37 ±0	.14			
$f_{_{Bd}}/f_{_{Bd}}$	1.24 ± 0.	04 ± 0.06			
Bs/Bd	1.0 ± 0.0	2			
η _в	0.551±0±	0.007		Το	0
Е _К					nservative??
B _K	0.79 ± 0.00	04 ± 0.09			
$\alpha_{s}(m_{z})$	0.1176 ±	0 ± 0.002			
η_{ct}	0.47 ± 0 :	± 0.04			
η _{tt}	0.5765	± 0 ± 0.0065			
Br(B→	$\rho(\omega)\gamma)/Br(B\rightarrow K^*$	∂			
ς	0.85 ± 0.	10			
ΔR	0.1 ± 0.1				

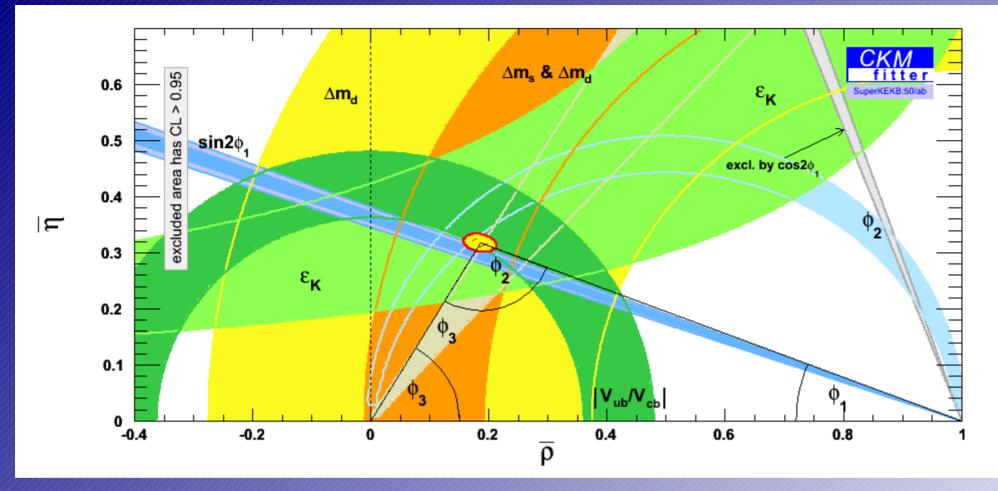
Estimated TH errors 2015

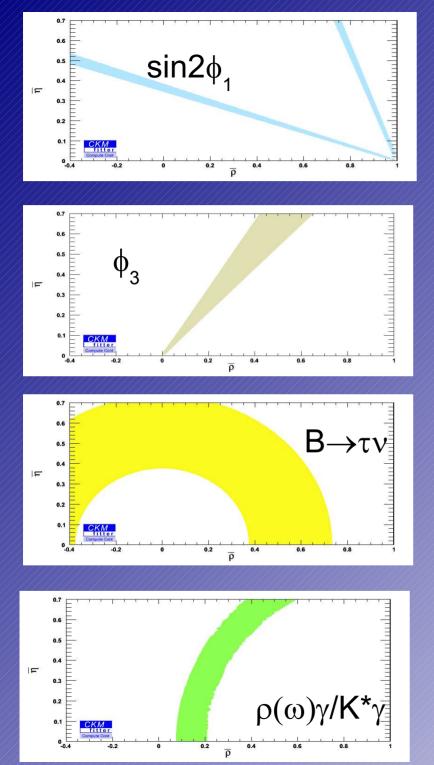


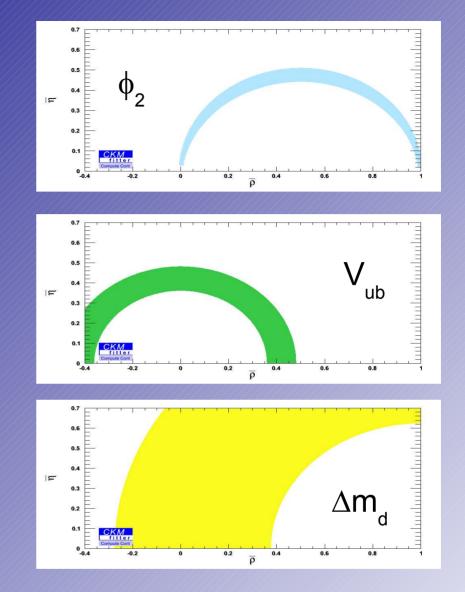
S. Sharpe, U.S. Lattice QCD executive committee V. Lubicz, talk given at the IV SuperB workshop


	Hadronic matrix element	Current lattice error	6 TFlop Year	60 TFlop Year	1-10 PFlop Year
	f_+ ^{Kn} (0)	0.9% (22% on 1-f ₊)	0.7% (17% on 1-f ₊)	0.4% (10% on 1-f ₊)	< 0.1% (2.4% on 1-f ₊)
	\hat{B}_{K}	11%	5%	3%	1%
	\mathbf{f}_{B}	14%	3.5 - 4.5%	2.5 - 4.0%	1 - 1.5%
	$f_{\rm Bs}B_{\rm Bs}^{1\!/2}$	13%	4 - 5%	3 - 4%	1 - 1.5%
	ξ	5% (26% on ξ-1)	3% (18% on ξ-1)	1.5 - 2 % (9-12% on ξ-1)	0.5 - 0.8 % (3-4% on ξ-1)
	$\mathcal{F}_{B \rightarrow D/D^* l \nu}$	4% (40% on 1- <i>F</i>)	2% (21% on 1- <i>牙</i>)	1.2% (13% on 1-牙)	0.5% (5% on 1- <i>F</i>)
E	С f ^{вп} ,	11%	5.5 - 6.5%	4 - 5%	2 - 3%
8	$T_1^{B \rightarrow K^*/\rho}$	13%			3 - 4%
Ĩ	STE				13

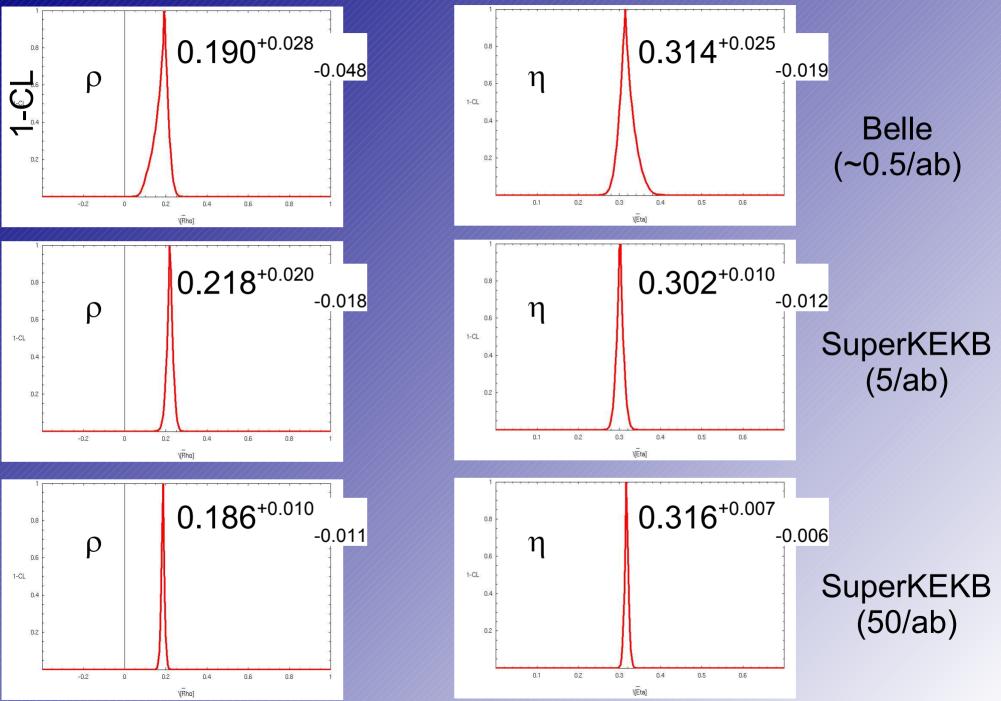
Can theorists be smart like this?

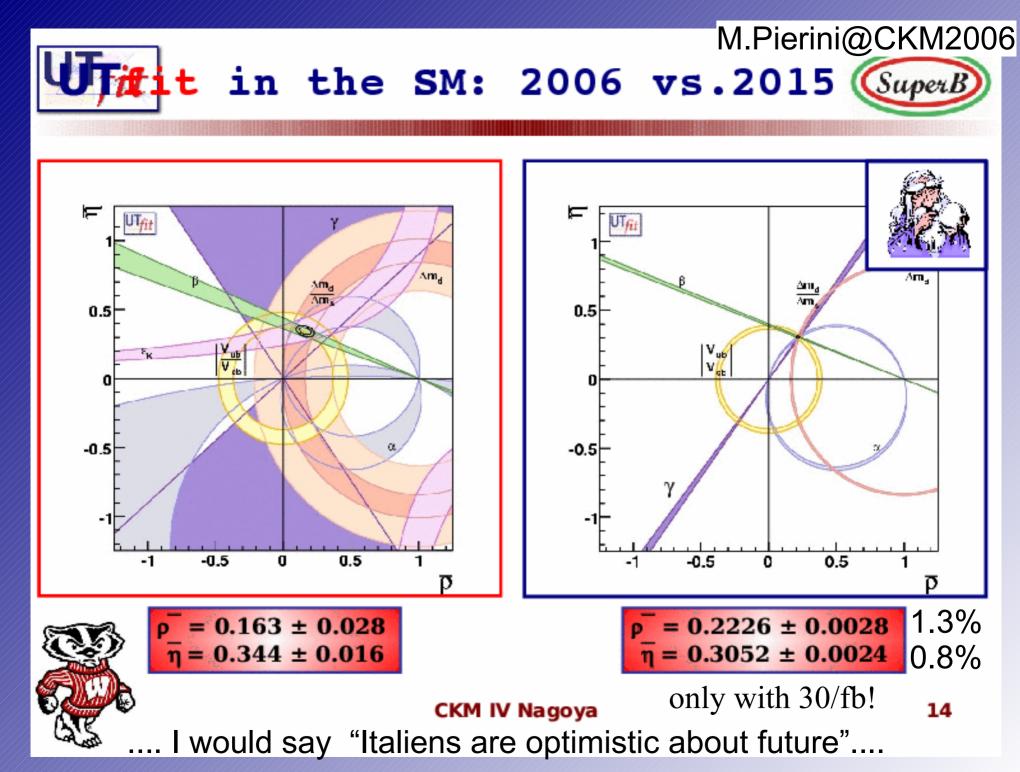

3. Standard model fit




SuperKEKB (5/ab)

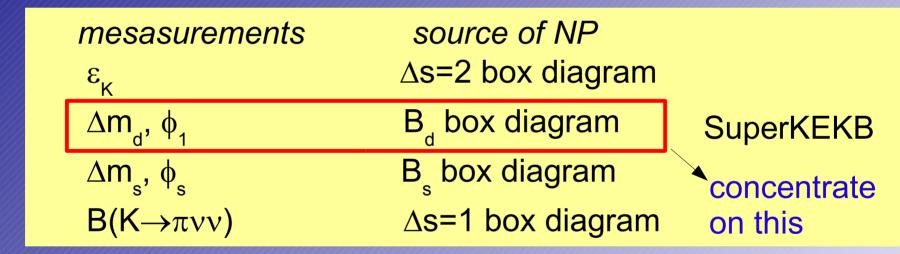
SuperKEKB (50/ab)

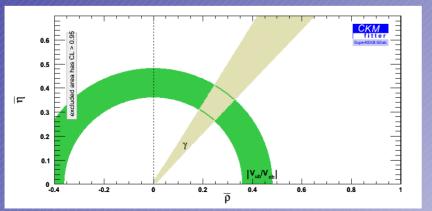

	$\sigma(\overline{\rho})$	$\sigma(\overline{\eta})$
Belle 5/ab 50/ab	20.0% 8.7% 5.6%	15.7% 3.6% 2.1%

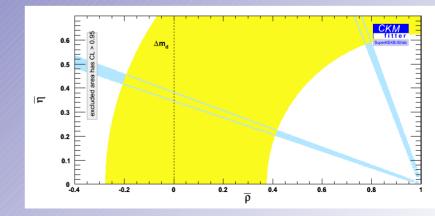


 $\overline{\rho}-\overline{\eta}$ constraint by each of SuperKEKB measurement with 50/ab.

1-D constraints in $\rho-\eta$ (SM fit)

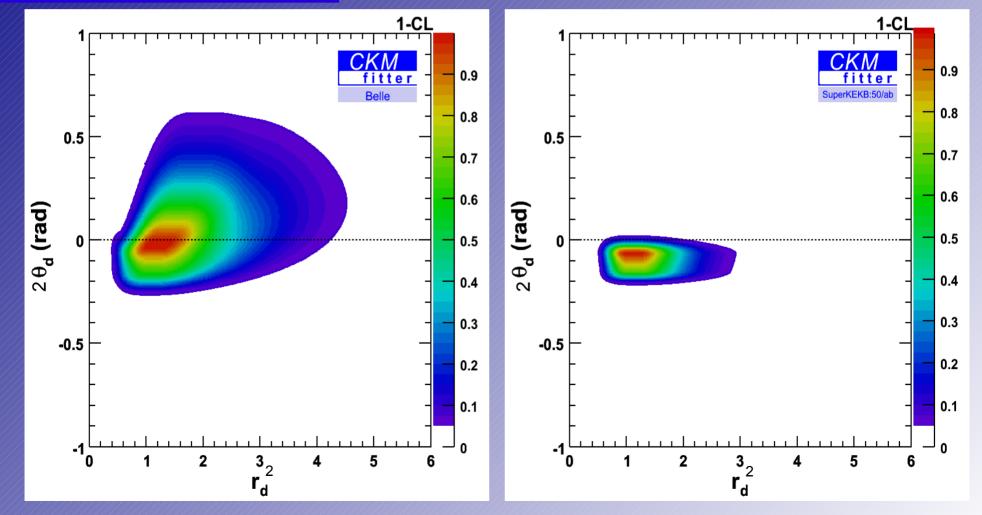


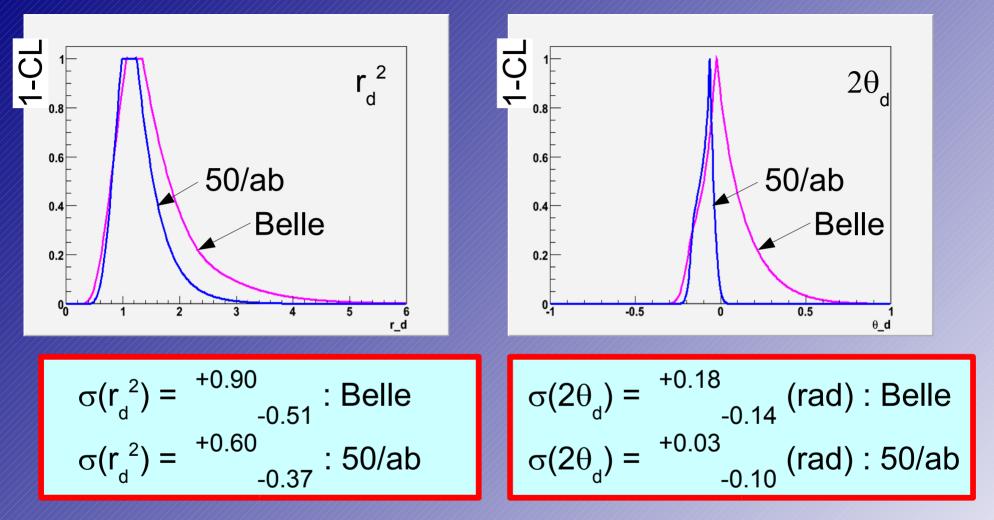

4. Fit with New Physics effect


Model-independent study of New Physics(NP) can be done by comparing

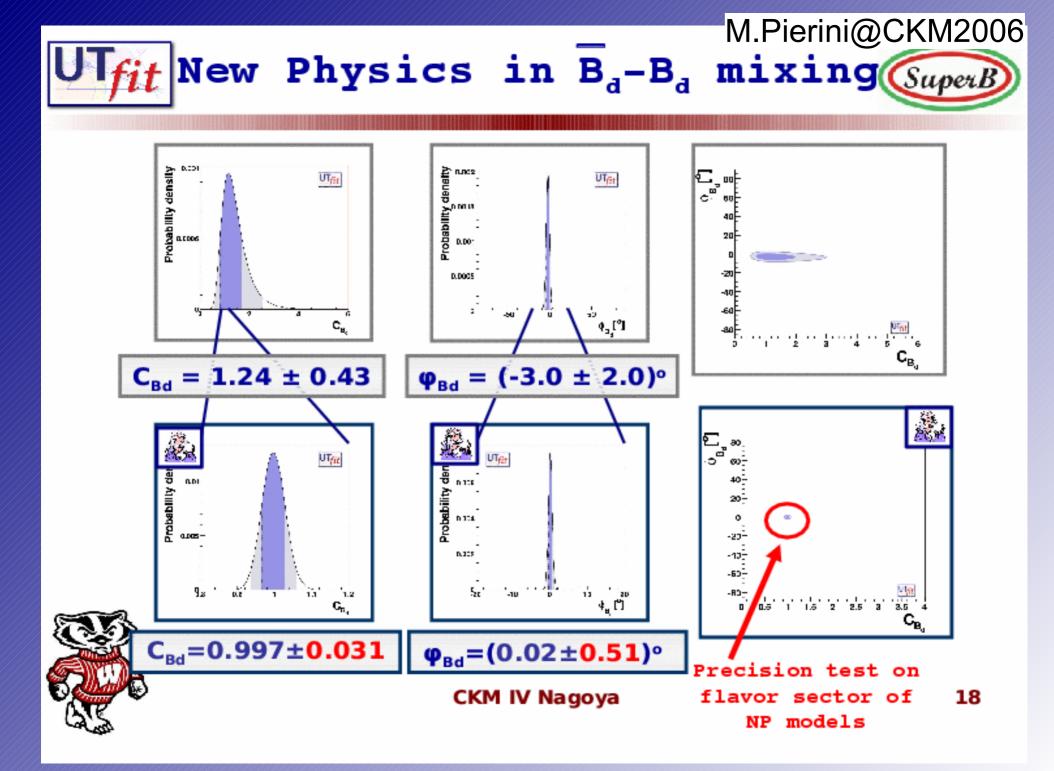
- tree level measurements : $|V_{\mu\nu}|$ and ϕ_3 , and

- measurements sensitive to NP :

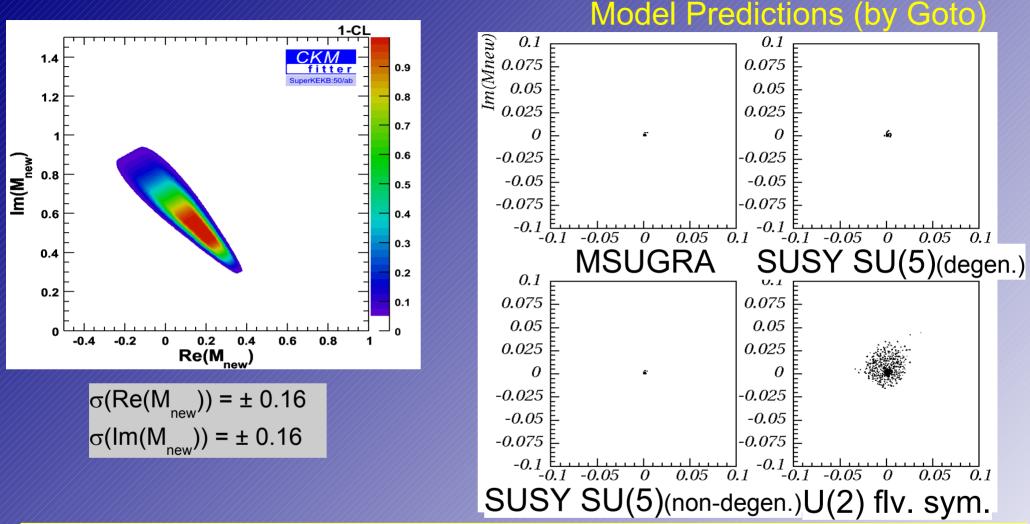




Model independent parameterization of NP effect: a) M = $r_d^2 M_{SM} exp(-i2\theta_d)$ b) M = $M_{SM} + M_{new} \rightarrow$ Goto et al, PRD53,6662


a) M = $r_d^2 M_{SM} exp(-i2\theta_d)$

Projections


 * Sensitivity to r_d² is limited by the uncertainties in V_{ub}(theo), f_{Bd} and B_d.
 → Improvements in LQCD calculations are necessary.
 * NP effect can be seen in 2θ_d with 50/ab if current central values are unchanged!

b) M = M_{SM} + M new 1-CL 1-CL 1.4 1.4 0.9 0.9 fitteı 0.8 1.2 1.2 0.8 Belle 50/ab 0.7 0.7 1 lm(M^{new}) 0.6 0.6 lm(M_{new}) 0.8 0.5 0.5 0.6 0.4 0.4 0.3 0.3 0.4 0.4 0.2 0.2 0.2 0.2 0.1 0.1 -0.2 0.2 0.6 0.8 -0.2 0.2 0.4 0.6 0.8 -0.4 -0.4 Re(M_{new}) Re(M_{new}) $\sigma(\text{Re}(M_{\text{new}})) = \pm 0.24$ $\sigma(\text{Im}(M_{\text{new}})) = \pm 0.44$ $\sigma(\text{Re}(M_{\text{new}})) = \pm 0.16$ $\sigma(Im(M_{new})) = \pm 0.16$

* Uncertainties in V_{ub} (theo), f_{Bd} and B_{d} contribute to both of real and imaginary parts of M_{new}

Identification of theoretical models

Models with a large FCNC are already excluded by various meas.
 Considered SUSY based models with soft breaking.

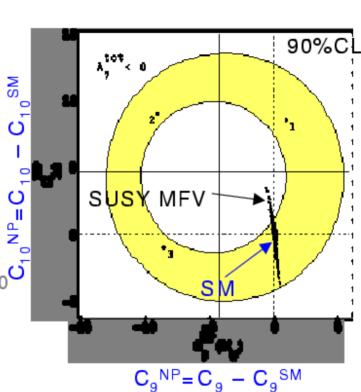
FCNC effect is small. \rightarrow very hard to identify

 U(2) flavor symmetry model might be able to be identified, but more resolution in NP parameters is necessary.....

5. Status of Wilson Coeff. fits

- Maybe better than $\overline{\rho}-\overline{\eta}$ fit for the NP search since dependence on LQCD uncertainties could be less.
- I must confess there is no signifcant progress since last BNM.
- Coding in Mathematica version of CKMfitter has been started, however, I'm now considering how to implement Wilson coeff.
 based models in the CKMfitter in a consistent way.
- Once the general design of implementation of Wilson coeff. and interface to radiative models is fixed, the model implementations should be straight-forward.
 - -> give me some more time.....

M.Iwasaki@CKM2006


Constraints on Wilson coefficients

- BR(b→sll) sign of C₇ constraints on C₉-C₁₀ (donut-shape)
- A_{FB} in b→sll

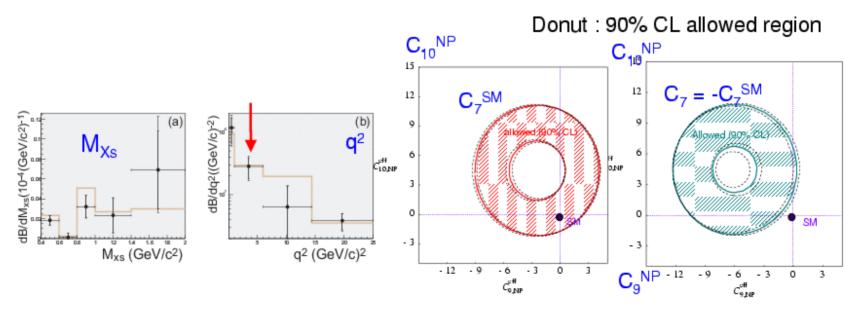
can determine relative signs of C_7 / C_{10} , C_9 / C_{10}

•b→svv

C₁₀ only contributes

In this talk, we cover

- 1) Semi-inclusive $B \rightarrow X_s I^+I^-$
- 2) A_{FB} with exclusive $B \rightarrow K^*I^+I^-$
- 3) Search for $B \rightarrow K^{(*)}vv$

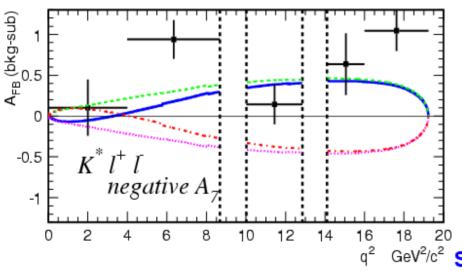

M.Iwasaki@CKM2006

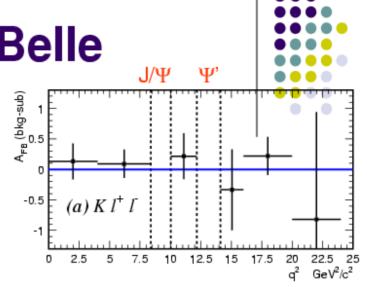
Constraints on C_i from $B(B \rightarrow X_s I^+I^-)$

P.Gambino, U.Haisch and M.Misiak PRL 94 061803 (2005)

- Clean prediction for B(B→X_sII) with 1<q²<6GeV² is available.
 - Combine Belle and Babar results
 - Sign of C₇ flipped case with SM C₉ and C₁₀ value is unlikely.

BF	Belle	Babar	WA	SM	$C_7 = -C_7^{SM}$
q²>(2m _µ)²	4.11±1.1	5.6 ± 2.0	4.5±1.0	4.4±0.7	8.8±0.7
1 <q2<6gev2< td=""><td>1.5±0.6</td><td>1.8±0.9</td><td>1.60 ± 0.5</td><td>1.57±0.16</td><td>3.30±0.25</td></q2<6gev2<>	1.5±0.6	1.8±0.9	1.60 ± 0.5	1.57±0.16	3.30±0.25


M.Iwasaki@CKM2006



Null test using K⁺II

 $A_{FB}^{bkg-sub}(B \to K^+\ell\ell) = 0.09 \pm 0.14(\text{stat.})$

• Projection to A_{FB} for K*II $A_{FB}^{bkg-sub}(B \rightarrow K^*\ell\ell) = 0.56 \pm 0.13$ (stat.)

Best fit for negative A₇ (SM like) $A_9/A_7 = -15.3 + 3.4 \pm 1.1,$ $A_{10}/A_7 = 10.3 + 5.2 \pm 1.8,$ SM $A_9/A_7 = -12.3,$ $A_{10}/A_7 = 12.8.$

fit result A_7A_{10} sign flipped (to SM) Both A_7A_{10} and A_9A_{10} signs flipped A_9A_{10} sign flipped

V²/c² Sign of A₉A₁₀ flipped case is excluded

5. Summary

* The constraints in $\overline{\rho} - \overline{\eta}$ plane with 50/ab data are estimated with very conservative assumptions to be

 $\sigma(\overline{\rho}) = 5.6\%$ $\sigma(\overline{\eta}) = 2.1\%$

* The sensitivity to NP using model-independent fit is limited by the uncertainties in LQCD calculations.

* NPfit with MFV model?

 * The Wilson coefficient fit is is now being developed in the framework of CKMfitter.
 -> Stay tuned....

Prospects of CKM (global) fit

* ~1% level constraint in $\overline{\rho}-\overline{\eta}$ is on the horizen at Super B, but measurements are already reaching at systematic limits. \rightarrow Experimental/theoretical challenge

* For the model-independent NP search, LQCD calculations are current limiting factors (i.e. the size of NP effect $\rightarrow V_{ub}, \Delta m_{d/s}$). \rightarrow How much can theorists improve them by 2015?

Can we be smarter as Italiens?

Two versions of ρ-η constraint plots should be prepared:
a) Very optimistic one for "advertisement"
b) Conservative one to urge us more improvements!