MPGDとTPC検出器周辺の 最新状況レビュー

2021/8/27, 第13回勉強会 測定器開発フロンティア勉強会 坂下健(KEK/J-PARC)

Contents

- MPGD/TPCとその世界的な動向
- · 国内の活動(プラットフォームC班の中をメインに)

・まとめ

謝辞:

・MPGDの最新情報は神戸大越智さんから頂きました。

・また、このスライドの作成についてはMPGD・アクティブ媒質TPC研究会 世話人の方々にご協力頂きました。 Micro Pattern Gas Detector(MPGD)

1988

A. Ochi

微細加工技術で作った微小な増幅器を用いたガス検出器。 *

2D-MSGC (Tokyo Inst. Tech., T. Tanimori)

ワイヤー型ガス検出器に比べて、高計数率特性、2次元読み出し等の特徴がある *

Physics

tracking,

imaging

MPGDの応用例:ものすごく多くの実験、検出器に応用されている

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements/ Remarks
ATLAS Muon System Upgrade: Start: 2019 (for 15 y.)	High Energy Physics (Tracking/Triggering)	Micromegas	Total area: 1200 m ² Single unit detect: (2.2x1.4m ²) - 2-3 m ²	Max. rate:15 kHz/cm ² Spatial res.: <100µm Time res.: - 10 ns Rad. Hard.: - 0.5C/cm ²	- Redundant tracking and triggering; Challenging constr. in mechanical precision:
ATLAS Muon Tagger Upgrade: Start: > 2023	High Energy Physics (Tracking/triggering)	µ-PIC	Total area: - 2m ²	Max.rate:100kHz/cm ² Spatial res.: < 100µm	
CMS Muon System Upgrade: Start: > 2020	High Energy Physics (Tracking/Triggering)	GEM	Total area: - 143 m ² Single unit detect: 0.3-0.4m ²	Max. rate:10 kHz/cm ² Spatial res.: ~100µm Time res.: ~ 5-7 ns Rad. Hard.: ~ 0.5 C/cm ²	- Redundant tracking and triggering
CMS Calorimetry (BE) Upgrade Start > 2023	High energy Physics (Calorimetry)	Micromegas, GEM	Total area: - 100 m ² Single unit detect: 0.5m ²	Max. rate: 100 MHz/cm ² Spatial res.: - mm	Not main option; could be used with HGCAL (BE part)
ALICE Time Projection Chamber: Start: > 2020	Heavy-Ion Physics (Tracking + dE/dx)	GEM w/ TPC	Total area: ~ 32 m ² Single unit detect: up to 0.3m ²	Max.rate:100 kHz/cm ² Spatial res.: ~300µm Time res.: ~ 100 ns dE/dx: 12 % (Fe55) Rad. Hard.: 50 mC/cm ²	- 50 kHz Pb-Pb rate; - Continues TPC readout - Low IBF and good energy resolution
TOTEM: Run: 2009-now	High Energy/ Forward Physics (5.3≤ eta ≤6.5)	GEM (semicircular shape)	Total area: - 4 m ² Single unit detect: up to 0.03m ²	Max.rate:20 kHz/cm ² Spatial res.: ~120µm Time res.: ~ 12 ns Rad. Hard.: - mC/cm ²	Operation in pp, pA and AA collisions.
LHCb Muon System Run: 2010 - now	High Energy / B-flavor physics (muon triggering)	GEM	Total area: ~ 0.6 m ² Single unit detect: 20-24 cm ²	Max.rate:500 kHz/cm ² Spatial res.: ~ cm Time res.: - 3 ns Rad. Hard.: ~ C/cm ²	- Redundant triggering
FCC Collider Start: > 2035	High Energy Physics (Tracking/Triggering/ Calorimetry/Muon)	GEM,THGEM Micromegas, u-PIC, InGrid	Total area: 10.000 m ² (for MPGDs around 1.000 m ²)	Max.rate:100 kHz/cm ² Spatial res.: <100µm Time res.: - 1 ns	Maintenance free for decades

Cylindrical MPGDs as Inner Trackers for Particle / Nuclear Physics

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics/ Performance	Special Requirements/ Remarks
KLOE-2 @ DAFNE Run: 2014-2017	Particle Physics/ K-flavor physics (Tracking)	Cylindrical GEM	Total area: 3.5m ² 4 cylindrical layers L(length) = 700mm R (radius) = 130, 155, 180, 205 mm	Spatial res:(r phi) - 250um Spat. res.(z) - 350um	- Mat. budget 2% X0 - Operation in 0.5 T
BESIII Upgrade @ Beijing Run: 2018-2022	Partcile Physics/ e+e- collider (Tracking)	Cylindrical GEM	3 cylindrical layers R ~ 20 cm	Max. rate: 10 kHz/cm ² Spatial res:(xy) - 130um Spat. res.(z) = 1 mm	 Material ≤ 1.5% of X₀ for all layers Operation in 1T
CLAS12 @ JLAB Start: > 2017	Nuclear Physics/ Nucleon structure (tracking)	Planar (forward) & Cylindrical (barrel) Micromegas	Total area: Forward - 0.6 m ² Barrel ~ 3.7 m ² 2 cylindrical layers R ~ 20 cm	Max. rate: - 30 MHz Spatial res.: < 200µm Time res.: - 20 ns	- Low material budget : 0.4 % X0 - Remote electronics
ASACUSA @ CERN Run: 2014 - now	Nuclear Physics (Tracking and vertexing of pions resulting from the p-antip annihilation	Cylindrical Micromegas 2D	2 cylindrical layers L = 60 cm R = 85, 95 mm	Max. trigger rate: kHz Spatial res.: ~200µm Time res.: ~ 10 ns Rad. Hard.: 1 C/cm ²	- Large magnetic field that varies from -3 to 4T in the active area
MINOS Run: 2014-2016	Nuclear structure	TPC w/ cylindrical Micromegas	1 cylindrical layer L=30 cm, R = 10cm	Spatial res.: <5 mm FWHM Trigger rate up to ~1 KHz	- Low material budget
CMD-3 Upgrade @ BINP Start: > -2019 ?	Particle physics (z-chamber, tracking)	Cylindrical GEM	Total arear: - 3m ² 2 cylindrical layers	Spatial res.: -100µm	

MPGD Technologies for the International Linear Collider

rimescale	Domain	Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirement Remarks	s/
ILC Time Projection Chamber for ILD: Start: > 2030	High Energy Physic (tracking)	s Micromegas GEM (pads) InGrid (pixels)	Total area: - 20 m ² Single unit detect: ~ 400 cm ² (pads) ~ 130 cm ² (pixels)	Max.rate:<1 kHz Spatial res.:<150µm Time res.: - 15 ns dE/dx: 5 % (Fe55) Rad. Hard.: no	Si + TPC Moment resolution : dp/p < 9*10-5 1/G Power-pulsing	tum eV
LC Hadronic (DHCAI Calorimetry for ILD/Sil Start > 2030	.) High Energy Physic D (calorimetry)	s GEM, THGEM RPWELL, Micromegas	Total area: - 4000 m Single unit detect: 0.5 - 1 m ²	² Max.rate:1 kHz/cm ² Spatial res.: ~ 1cm Time res.: - 300 ns Rad. Hard.: no	Jet Energy resolution: 3-4 % Power-pulsing, se triggering reado	elf-
ILD Concept:			Partic	le Flow Calorimetr	y (ILD/SiD):	ت 20
		SiD Conce	ept: Tungst	en Tungst	ten Iron	中性
				digital and	alog digital	二二 用
			Silicon Scintillat	tor MAPS Scintillator	RPC GEM	н
						Х
MPG	D <u>Trackin</u>	<u>g for He</u>	eavy Ion /	<u>/ Nuclear F</u>	<u> Physics</u>	X
MPG Experiment/ Timescale	D <u>Trackin</u> Application Domain	<mark>g for He</mark> MPGD Technology	Bavy On I Total detector size / Single module size	Nuclear Operation Characteristics / Performance	Physics Special Requiremen Remarks	X 実駒
MPG Experiment/ Timescale STAR Forward GEM Tracker @ RHIC Run: 2012-present	D <u>Trackin</u> Application Domain Heavy Ion Physics (tracking)	<u>g for Ha</u> MPGD Technology GEM	Total detector size / Single module size Total area: - 3 m ² Single unit detect: - 0.4 x 0.4 m ²	/ Nuclear F Operation Characteristics / Performance Spatial res.: 60-100 µm	Physics Special Requiremen Remarks Low material budget: <1% XK tracking layer	X 実験 さ
MPG Experiment / Timescale STAR Forward GEM Tracker @ RHIC Run: 2012-present Nuclotron BM@N @ NICA/JINR Start:> 2017	D <u>Trackin</u> Application Domain Heavy Ion Physics (tracking) Heavy Ions Physics (tracking)	MPGD Technology GEM GEM	Total detector size / Single module size Total area: - 3 m ² Single unit detect: - 0.4 x 0.4 m ² Total area: - 12 m ² Single unit detect: - 0.9 m ²	/ Nuclear F Operation Characteristics / Performance Spatial res: 60-100 µm Max. rate: - 300 MHz Spatial res: - 200µm	Special Requiremen Remarks Low material budget:: < 1% XI tracking layer Magnetic field 0.2 orthogonal to elect field	X 実駒 さ
Experiment/ Timescale STAR Forward GEM Tracker @ RHIC Run: 2012-present Nuclotron BM@N @ NICA/JINR Start: > 2017 SuperFRS @ FAIR Run: 2018-2022	D Trackin Domain Heavy Ion Physics (tracking) Heavy Ions Physics (tracking/diagnostics at the In-Fly Super Fragment Separator)	GEM GEM GEM GEM	Total detector size / Single module size Total area: - 3 m² Single unit detect: - 0.4 x 0.4 m² Total area: - 12 m² Single unit detect: - 0.9 m² Total area: - few m² Single unit detect: Type 1: 50 x 9 cm² Type 1: 50 x 16 cm²	Operation Characteristics / Performance Spatial res.: 60-100 μm Max. rate: - 300 MHz Spatial res.: - 200 μm Max. rate: - 10*7 Hz/spill Spatial res.: 1 mm	Special Requirement Remarks Low material budget: < 1% Xt tracking layer Magnetic field 0.1 orthogonal to elev field High dynamic ra Particle detection from p to Uraniu	X 実見 さ
Experiment / Timescale STAR Forward GEM Tracker @ RHIC Run: 2012-present Nuclotron BM®N @ NICA/JINR Start > 2017 SuperFRS @ FAIR Run: 2018-2022 PANDA @FAIR Start > 2020	D Trackin Domain Heavy Ion Physics (tracking) Heavy Ion Physics (tracking/diagnostics at the In-Fly Super Fragment Separator) Nuclear physics p - anti-p (tracking)	CEM MPGD Technology GEM GEM TPC w/ GEMs Micromegas/ GEMs	Total detector size / Single module size Total area: - 3 m ² Single unit detect: - 0.4 x 0.4 m ² Total area: - 12 m ² Single unit detect: - 0.9 m ² Total area: - few m ² Single unit detect: Type 1: 50 x 9 cm ² Type 1: 50 x 16 cm ² Total area: - 50 m ² Single unit detect: - 1.5 m ²	Operation Characteristics / Performance Spatial res: 60-100 μm Max. rate: 300 MHz Spatial res: - 200 μm Max. rate: 10°7 Hz/spill Spatial res: 1 mm Max. rate: 140kHz/cm² Spatial res: 150 μm	Special Requiremen Remarks Low material budget:: < 1% XI tracking layer Magnetic field 0.: orthogonal to ele- field High dynamic ra Particle detection from p to Uraniu Continuous-warvo operation: 10 ¹¹¹ interaction/s	
CBMPG Experiment/ Timescale STAR Forward GEM Tracker @ RHIC Run: 2012-present Nuclotron BM@N @ NICA/JINR Start: > 2017 SuperFRS @ FAIR Run: 2018-2022 PANDA @FAIR Start > 2020 CBM @ FAIR: Start: > 2020	D Trackin Domain Application Domain Heavy Ion Physics (tracking) Heavy Ion Physics (tracking/diagnostics at the In-Fly Super Fragment Separator) Nuclear Physics p - anti-p (tracking) Nuclear Physics (Muon System)	GEM Micromegas/ GEM	Total detector size / Single module size Total area: - 3 m² Single unit detect: -0.4 x 0.4 m² Total area: - 12 m² Single unit detect: -0.9 m² Total area: - few m² Single unit detect: Type II: 50 x 9 cm² Type II: 50 x 16 cm² Single unit detect: -1.5 m² Total area: - 9m² Single unit detect: 0.5 m²-0.4m²	Operation Characteristics / Performance Spatial res: 60-100 µm Max.rate: - 300 MHz Spatial res: - 200µm Max.rate: - 10°7 Hz/spill Spatial res: - 200µm Max.rate: - 10°7 Hz/spill Spatial res: - 10µm Max.rate: - 10µm Spatial res: - 150µm Spatial res: - 15ns Rad hard: 10 ³ n.eq./cm ² /year	Physics Special Requiremen Remarks Low material budget::<1% XX tracking layer Magnetic field 0.3 orthogonal to ele- field High dynamic ra Particle detection from p to Uraniu Continuous-waw operation: 10 ¹¹ interaction/s Self-triggered electronics	X 実験 さ
Experiment/ Timescale STAR Forward GEM Tracker @ RHIC Run: 2012-present Nuclotron BM@N © NICA/JINR Start: > 2017 SuperFRS @ FAIR Run: 2018-2022 PANDA @FAIR Start > 2020 CBM @ FAIR: Start: > 2020 Electron-Ion Collider (EIC) Start: > 2025	D Trackin Domain Heavy Ion Physics (tracking) Heavy Ion Physics (tracking/diagnostics at the In-Fly Super Fragment Separator) Nuclear physics p - anti-p (tracking) Nuclear Physics (Muon System) Hadron Physics (tracking, RICH)	CEM CEM CEM CEM CEM CEM CEM CEM	Total detector size / Single module size Total area: - 3 m² Single unit detect: - 0.4 x 0.4 m² Total area: - 12 m² Single unit detect: - 0.9 m² Total area: - few m² Single unit detect: - 1.5 m² Total area: - few m² Single unit detect: - 1.5 m² Total area: - 50 m² Single unit detect: - 1.5 m² Total area: 9m² Single unit detect: 0.8x0.5m²-0.4m² Total area: - 3 m² Total area: - 3 m² Total area: - 25 m²	A Nuclear F Operation Characteristics / Performance Spatial res:: 60-100 µm Max.rate: - 300 MHz Spatial res:: - 200µm Max.rate: - 10^77 Hz/spill Spatial res:: - 1077 Hz/spill Spatial res:: - 100µm Max.rate: - 140kHz/cm² Spatial res:: - 150µm Spatial res:: - 150µm Spatial res:: - 150µm Spatial res:: - 100µm (ré) Luminosity (e-p): 10 ³⁰ Spatial res:: - 500µm Max.rate: - 100µm Max.rate: - 100µm	Special Requiremen Remarks Low material budget:: < 1% XI tracking layer Magnetic field 0.1 orthogonal to elefield High dynamic ra Particle detection from p to Uraniu Continuous-waro operation: 10 ¹¹¹ interaction/s Self-triggered electronics Low material bud Low material bud	X 実見 さ

Prof. Maxim Titov(Saclay) at MGPD2017 Conference summary talk

MPGD Track

Experiment/ Timescale	Applica Domair
COMPASS @ CERN Run: 2002 - now	Hadron P (Tracki
KEDR @ BINP Run: 2010-now	Particle P (Tracki
SBS in Hall A @ JLAB ご——	Nuclear P (Tracki nucleon factors/s
まかにも	Nuclear P (Tracki precision of proton
子検出器	Nucle Physi (Tracki
-トリノ	Hadron P (Tracki
県物質	Nuclear p Nuclear sti leaction pr
,γ線	D Te
こも応用	plicatio main
ている	ladron Ph CH - detec gle VUV pl
PHENIX HBD N Run: 2009-2010 (RIC)	Juclear Phy H – e/h sep
SPHENIX He Run: 2021-2023	avy Ions P (tracking
Electron-Ion F Collider (EIC) (1 Start: > 2025	Iadron Phy racking, R
	1

MPGDの応用例@World

量産、QC/QA

Layer2 Difference /√2

(L1_x - L2_x)/sqrt(2) [mm]

大型(大面積化)

Production, sector integration ongoing (~1200m² resistive MM):

CERN RD51

MPGDの国際的な開発コミュニティ

https://rd51-public.web.cern.ch/wgactivities

Time Projection Chamber(TPC)

tracking, imaging, calorimeter, particle ID

飛跡検出器としてのGas TPC は、これまでにTOPAZ, ALICE実験など様々なHEP実験で応用(磁場中で運動量も測定)

TPC内の媒質(gas or liquid)が物理事象のtargetや源

例えば、暗黒物質、0νββ、ニュートリノ 検出器など

> 例:FNAL microBooNE実験 液体アルゴンTPCによるニュートリノ 原子核反応の例

Active媒質TPCの応用例:こちらも多くの実験・プロジェクトで応用、R&Dされている

- · 暗黒物質実験
 - 液体希ガス検出器:XENON, PandaX, ZEPLIN, LUX, LZ, DARWIN(2相式液体キセノンTPC),
 WArP, ArDM, ANKOK, DarkSide, ARGO(2相式液体アルゴンTPC)
 - ・ガス検出器:DRIFT, NEWAGE, DMTPC, CYGNUS(TPC+MPGD)
- · 0 ν β β 実験
 - · 高圧ガスTPC: NEXT, AXEL, PandaX-III
 - ・液体希ガス検出器:EXO
- ・ニュートリノ検出器
 - 液体希ガス検出器: ICARUS T600, MicroBooNE, SBND, LArIAT, DUNE-SP, ProtoDUNE-SP, ArgonCube, Vertical Drift(1相式), DUNE-DP, ProtoDUNE-DP, WA105, ARAIDNE, LArTPC@KEK (2相式)
 - · 高圧ガスTPC: DUNE NearDetector(MPD)
- X線、γ線検出器
 - ・ガス検出器:HARPO, SMILE-II
- その他にも中性子イメージング検出器など

たぶん抜けてる実験が多くあると思います。

Active媒質TPCの応用例@World:XENONnT

暗黒物質探索実験の2相式液体キセノン検出器

ドリフト時間から発生点の再構成(TPC) S1,S2比などからNR,ERの区別

国内の活動

- · MPGD、TPC開発は以前から国内でも開発研究が活発
 - MPGD研究会 2004年から開催
 - ・ KEK DTPではMPGDグループやLiqTPCグループの活動も
 - · 近年ではアクティブ媒質TPC座談会の開催(2015年から)
- MPGD+アクティブ媒質TPC合同研究会を2019年、2020年開催

最近の国内の活動として、主に過去3回の研究会のスライドから紹介します

2019.03 @神戸 アクティブ媒質TPC開発座談会 https://conference-indico.kek.jp/event/66/ 2019.12 @RIKEN MPGD&アクティブ媒質TPC2019研究会 https://indico2.riken.jp/event/3144/ 2020.12 @神戸 MPGD&アクティブ媒質TPC2020研究会 https://conference-indico.kek.jp/event/120/

LTCC µ-PIC**EI**t

▶MPGDの一種であるµ-PICIこLTCCという素材を用いた

>LTCC-Low Temperature Co-fired Ceramics-(低温焼結セラミックス)は1000℃以下で焼成 できて焼結前の加工が簡単

Fabrication process of LTCC-GEM

DLC µ-PIC

- ▶ 陰極にDiamond Like Carbon(DLC)を用いたµ-PIC
 - 電極間で放電が発生した際に、陰極の抵抗でオームの法則に従い、電圧降下が発生し、ゲインを下げ、発生電子数をさげ放電を抑える→放電抑制

MPGDの性能向上にむけて 様々な素材の開発も行われている

様々なMPGD検出器の応用、新しいアイデア、開発研究も

・大強度重イオンビーム照射用低圧ガス アクディブ標的 CAT

- ・超小型衛星搭載用GEM X線検出器
- ・中性子イメージング検出器
- ・ミグダル観測への応用

backupスライドも参照して下さい 17

低圧ガスTPCによる太陽KKアクシオン探索

μ PIC+GEM

(18ユニット中5ケ使用)

他は海外G、公募研究などに供用)

身内氏スライドより抜粋 (新学術「地下宇宙」領域研究会 2019)

> NEWAGEチェンバー: 使用イメージ

細川(東北大)

et. al.

大型化にむけた180L試作機でのR&D

- ~0.05 kg @8 bar
- ELCCの原理検証
- 分解能評価≤356 keV

Simulated energy resolution for 30keV e-

深さ 5 mm, 穴径 5.5 mm, ピッチ10 mmの六角形配置

各種要素技術開発 フィールドケージ CW高電圧生成 Readout elec. Gas循環・純化系

放電との戦い

背景事象0に向けた開発 Baイオン読み出し 19

180Lでの性能評価:Q値でのエネルギー分解能:0.68%(FWHM)

Entries / bin 1600 E Entries 400419 Entries / A Ka 1406 ± 19.3 1400 mean Ka 29.75 ± 0.01 sigma_Ka 0.5674 ± 0.0060 1200 A_Kb 348.7 ± 10.5 mean_Kb 33.79 ± 0.02 1000 sigma Kb 0.579 ± 0.016 87.17 ± 1.44 800 const 600 400 200 0 10 20 30 40 50 60 Energy [keV]

241Am source

PMT

GND

テストセットアップ でS2信号確認

ANKOK実験:気液2相型Ar光検出器

- 真空紫外光 (128 nm)の高効率検出@ 極低温
- 光検出器窓面や検出器内壁 (反射材) へ 波長変換材 (TPB) を真空蒸着
- 13 p.e./keV (PMT), ~25 p.e./keV (MPPC) を実証 (c.f. XMASS ~ 15 p.e./keV)

- ・電離電子生成量の向上と電離信号検出効率の最大化

 ・高ドリフト電場の形成 (最大3 kV/cm)
- 電離電子検出効率 ~100%
- S2増幅率 >10 photon/e-

- 高感度アルゴン検出器による低エネルギー応答測定
 - 光量に特化した1相検出器 (電場なし) により, 10keV以下のシンチレーション応答を初めて測定
- エネルギー依存性を関数化

Active霂質Hしの様々な応用、新しいアイデア、開発研究 Field cage

ody

KEK測定器開発プラットフォームC

共通な要素技術がたくさん!

ガス検出器+アクティブ媒質TPCの開発についてKEK DTP プラットフォームCの活動があります

- ・新規参加者をまだまだ募集中
- ・主な活動内容:
 - ・共通備品の整備(貸し出しも可能です)、
 KEKでの共通開発スペース
 - · 講習会・セミナーの開催 など
 - ・共通の技術課題に対する開発

web pa	age
--------	-----

≍ Confluence スペー	ス ~ 作成	検索	Q	0	ログイン
RD Platform C	ペ−೨ RD Platform C Home Page				
ページ ツリー	作成者: Operator Admin 最終編集者: SAKASHITA Ken 1分	计以内			
• 参加登録	測定器開発室プラットフォームCグループのホーム・	ページです。			
• 研究会	ADL GATING 20 パワイームCD かゆうのがよう。 ADL GATING 20 パワイームCD かゆうのが、 H 美通な 技術の情報交流、情報の 研究会や講習会等の開催 共通の技術が問題に対する開発 KEK内の設備の利用など パラットフォーム関係の研究での成果には、 この研究はKEK測定器開発ブラットフ This work was partially supported by メンバー 現在、39人の方が参加しています。考 参加を希望されるかたは、こちらから 共用物品 RD Platform共通の備物品が以下の通 現在使用方法について準備中ですが、 https://wiki.kek.jp/pages/viewpage.a で研究会 これまでの研究会はこちらです。	ページビッ。 ティブ煤質TPCに関して以下の活動を進め 潜積 以下の謝辞をおねがいします。 オームの支援を受けました。 the KEK Detector R&D Platform. や加希望者リスト(要パスワード) お願いします。 早急に希望があれば世話人までご連絡下る ction?pageld=127273152	さい。		
	 ミーティングのindicoは、こちらです。 	。(まずこちらから、KDSへのパスワード?	を取得して下さ	い)	
				ラベル	なし

https://wiki.kek.jp/display/rdptpc/RD+Platform+C+Home+Page

・外部資金の獲得

ぜひ活用してください! 興味のある方は、坂下(KEK)・身内(神戸大)までご連絡ください₂₄

まとめ

・MPGDやTPCは、コライダー実験、暗黒物質探索、 ニュートリノ実験、X線γ線観測実験、中性子実験 など非常に幅広い分野で応用されている

また新しいアイデアで応用分野が広がっている

・国内でも開発研究が活発

・共通な要素技術が多く存在

今年も12月にMPGD+アクティブ媒質TPC研究会@岡山を 予定しています。皆様の参加をお待ちしています。

backup

密閉型液体Xe検出器の開発

風間(名古屋大)

et. al.

光透過性などのR&Dが進行中 27

液体ヘリウムを用いた暗黒物質探索

<10GeV/c2の軽い暗黒物質の探索に むけた液体ヘリウムTPCの開発 液体ヘリウムを用いた軽い暗黒物質探索の提案 W. Guo and D.N. McKinsey, PRD 87, 15001 (2013)

技術的課題:

- ・16eV光子に感度を持つ検出器の開発
- ・10kV/cm電場の形成

フィードライン 出

ᆎ

周波数

(e)

出力位相

- ・液面制御
- etc.

KIDの応用

O(1)-O(10)MeVの反電子 v の高精度観測に向けた開発 有機液体の利点

- \bullet ・ $ilde{B}$ 崩壊のターゲットになる free protonが 豊富に存在
- ド ・無極性な媒体を使えば電離電子のドリフトが可能
- ・逆β崩壊からの陽電子等を空間的に分離して測定可能

・室温・大気圧で運用可能

高いエネルギー分解能、Backgroundフリー な超新星背景ニュートリノ測定が可能に

bution of electrons for a typical anti-neutrino interaction. In the centre, the positron

中性子ビームによって¹²C励起状態を作り、 そこから3α崩壊をTPCで測定 "アクティブ標的TPC"

見たい物理事象の測定を最適にするために、

大阪大OKTAVIAN施設で 14MeV単色中性子源を 使って実験

本実験に向けて大型化 (30cm x 30cm)を行う

30

性能Upgradeも進行中

伊藤(理科大) et. al.

極限まで少ない放射性不 純物が要求される実験で は試料表面の汚染の理解 が重要。

表面α線分析はGe分析と は独立的な重要な役割

- 試料由来のa線汚染分布を得られることを実証した。
- 端に線源を取り付ければサンプル測定と同時にガス状態を

SiPMのα線汚染の確認

ミグダル観測に向けたガス検出器開発

中村(東北大) et. al.

ミグダル効果とは

•

- ・原子核反跳等で、追加の励起や電離が発生する
- ・まず原子核が動き、電子が追随する、という描像
 をちゃんと計算すると出てくる

Ar 1atm 400um-pitch 5.9keV gamma (55Fe): ER+ER

特徴

arXiv: 2009.05939

- ・ガス中だと2つのクラスター
- ・ cluster-Bは特性X線のエネルギーになる
- ⇒位置感度のあるガス検出器

ガス検出器

- Ar 1atm
 - ・µ-PIC(400um ピッチ)
 - Arは非弾性散乱がなく、低BG
- Xe 8atm
 - ・pixelized EL readout (1cm ピッチ)
 - ・エネルギー分解能が良い
- ・⇒それぞれ、1000ev/日くらい

target	Ar 1atm	Xe 8atm
K-shell energy	4keV	30keV
absorption length	2.95cm	2.19cm
fluorescence yield	0.14	0.9
event rate	603 ev/day	975 ev/day

低圧ガス検出器を用いた探索

NEWAGEチェンバーの利用

超低物質量RPCの開発

Image of Gd test target (³He detector) 8 cm

@J-PARC MLF

Base performance characteristics					
	³ He	10 B			
Active area	10 x 10 cm ²				
Spatial resolution	0.1 mm	0.45 mm			
Time resolution	0.25 µs	~10 ns			
γ-sensitivity	< 10 ⁻¹²				
Efficiency @25.3meV	26%	5%			
Count rate capacity	8 Mcps	22 Mcps			
Effective count rate	> 1 Mcps				

Bin size: 40 x 40 µm² Spatial res: ~100 µm

µPIC-based neutron imaging detector (µNID)

中性子イメージング検出器

Neutron detection via <u>³He gas</u> (n + ³He \rightarrow p + t) or <u>¹⁰B thin-layer</u> (n + ¹⁰B \rightarrow alpha + ⁷Li)

Gaseous time-projection-chamber

J.Parker(CROSS)

et. al.

- CF₄-iC₄H₁₀-³He (45:5:50) at 2 atm
- µPIC micropattern readout
- Compact ASIC+FPGA data encoder front-end
- 3-dimensional tracking (2D position + time) with time-over-threshold
 - Accurate position reconstruction
 - Strong gamma rejection

MEMS加工のµPICによる位置分解能の改善

大強度重イオンビーム照射用低圧ガスアクディブ標的 CAT

アクティブ標的CAT-M

7mm 読み出し電極(4048ch)

不安定核ビーム実験では 低エネルギー反跳粒子測定 Inverse

波形サンプリング **GET** electronics

M-THGEM

Flower GEM

厚さ

厚さ

現在の問題

->大強度ビーム照射化ではGEMからのイオンバックフローによる電場の歪み Flower GEMを用いるとIBFが0.5%程度まで抑制される。(郡司さん)

従来のCAT-MではM-THGEMのみ使っていた。 新しくFlower GEMを使い、IBFを抑えたい!

イオンバックフローを抑える改良

超小型衛星搭載用GEM X線検出器

MAXIが発見した突発天体を追観測する衛星を計画

玉川(理研)

et. al.

ILC TPC開発

ILD-TPC

Gas amplification of ionised electrons and read out as electrical signal

Test Beam @ DESY: GEM-TPC with Large-aperture GEM gating device (produced by FUJIKARA)

ビームBKGとIBFか らの飛跡の歪み ~60um→Gating is needed

Electron transmission (3.5 V) ~ 82-86%

